Publication Citation
Tilmes, S., et al. (2019), Climate Forcing and Trends of Organic Aerosols in the Community Earth System Model (CESM2), J. Adv. Modeling Earth Syst., 11, 4323-4351, doi:10.1029/2019MS001827.
Travis, K., et al. (2020), Constraining remote oxidation capacity with ATom observations, Atmos. Chem. Phys., 20, 7753-7781, doi:10.5194/acp-20-7753-2020.
Tribby, A. L., et al. (2022), Hydrocarbon Tracers Suggest Methane Emissions from Fossil Sources Occur Predominately Before Gas Processing and That Petroleum Plays Are a Significant Source, Environ. Sci. Technol., doi:10.1021/acs.est.2c00927.
Veres, P., et al. (2020), Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere, Proc. Natl. Acad. Sci., 117, doi:10.1073/pnas.1919344117.
Wang, S., et al. (2019), Ocean Biogeochemistry Control on the Marine Emissions of Brominated Very Short‐Lived Ozone‐Depleting Substances: A Machine‐Learning Approach, J. Geophys. Res., 124, doi:10.1029/2019JD031288.
Wang, S., et al. (2019), Atmospheric Acetaldehyde: Importance of Air‐Sea Exchange and a Missing Source in the Remote Troposphere, Geophys. Res. Lett., 46, doi:10.1029/2019GL082034.
Wang, S., et al. (2020), Global Atmospheric Budget of Acetone: Air‐Sea Exchange and the Contribution to Hydroxyl Radicals, J. Geophys. Res., 125, e2020JD032553, doi:10.1029/2020JD032553.
Watson-Parris, D., et al. (2019), In situ constraints on the vertical distribution of global aerosol, Atmos. Chem. Phys., 19, 11765-11790, doi:10.5194/acp-19-11765-2019.
Williamson, C., et al. (2018), Fast time response measurements of particle size distributions in the 3–60 nm size range with the nucleation mode aerosol size spectrometer, Atmos. Meas. Tech., 11, 3491-3509, doi:10.5194/amt-11-3491-2018.
Williamson, C., et al. (2019), A large source of cloud condensation nuclei from new particle formation in the tropics, Nature, 574, 399-403, doi:10.1038/s41586-019-1638-9.
Williamson, C., et al. (2021), Large hemispheric difference in nucleation mode aerosol concentrations in the lowermost stratosphere at mid and high latitudes, Atmos. Chem. Phys., 21, 9065-9088, doi:10.5194/acp-21-9065-2021.
Wolfe, G. M., et al. (2019), Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1821661116.
Yu, P., et al. (2019), Efficient In‐Cloud Removal of Aerosols by Deep Convection, Geophys. Res. Lett., 46, 1061-1069, doi:10.1029/2018GL080544.
Yu, X., D. Millet, and D. K. Henze (2021), How well can inverse analyses of high-resolution satellite data resolve heterogeneous methane fluxes? Observing system simulation experiments with the GEOS-Chem adjoint model (v35), Geosci. Model. Dev., 14, 7775-7793, doi:10.5194/gmd-14-7775-2021.
Yu, X., et al. (2021), Aircraft-based inversions quantify the importance of wetlands and livestock for Upper Midwest methane emissions, Atmos. Chem. Phys., 21, 951-971, doi:10.5194/acp-21-951-2021.
Zeng, L., et al. (2020), Global Measurements of Brown Carbon and Estimated Direct Radiative Effects, Geophys. Res. Lett., 47, doi:10.1029/2020GL088747.
Zhang, L., et al. (2022), Development and Evaluation of the Aerosol Forecast Member in NCEP’s Global Ensemble Forecast System (GEFS-Aerosols v1), Geosci. Model. Dev. (submitted).
Zhang, L., et al. (2022), Inline coupling of simple and complex chemistry modules within the global weather forecast model FIM (FIM-Chem v1), Geosci. Model. Dev., 15, 467-491, doi:10.5194/gmd-15-467-2022.
Zhao, T., et al. (2022), Source and variability of formaldehyde (HCHO) at northern high latitude: an integrated satellite, aircraft, and model study, Atmos. Chem. Phys., 22, 7163-7178, doi:10.5194/acp-22-7163-2022.
Zhu, L., et al. (2019), Effect of sea salt aerosol on tropospheric bromine chemistry, Atmos. Chem. Phys., 19, 6497-6507, doi:10.5194/acp-19-6497-2019.