Publication Citation
Miller, D., and W. H. Brune (2022), Investigating the Understanding of Oxidation Chemistry Using 20 Years of Airborne OH and HO2 Observations, J. Geophys. Res., 127, e2021JD035368, doi:10.1029/2021JD035368.
Murphy, D., et al. (2018), An aerosol particle containing enriched uranium encountered in the remote T upper troposphere, Journal of Environmental Radioactivity, 184–185, 95-100, doi:10.1016/j.jenvrad.2018.01.006.
Murphy, D., et al. (2019), The distribution of sea-salt aerosol in the global troposphere, Atmos. Chem. Phys., 19, 4093-4104, doi:10.5194/acp-19-4093-2019.
Murphy, D., et al. (2021), Radiative and chemical implications of the size and composition of aerosol particles in the existing or modified global stratosphere, Atmos. Chem. Phys., 21, 8915-8932, doi:10.5194/acp-21-8915-2021.
Murphy, D., et al. (2023), Metals from spacecraft reentry in stratospheric aerosol particles, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2313374120.
Murray, L., et al. (2022), Large uncertainties in global hydroxyl projections tied to fate of reactive nitrogen and carbon, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2115204118.
Nair, A. A., et al. (2021), Machine learning uncovers aerosol size information from chemistry and meteorology to quantify potential cloud-forming particles, Geophys. Res. Lett., doi:10.1029/2021GL094133.
Nalli, N., et al. (2020), Validation of Carbon Trace Gas Profile Retrievals from the NOAA-Unique Combined Atmospheric Processing System for the Cross-Track Infrared Sounder, Remote Sens., 12, doi:10.3390/rs12193245.
National Academies of Sciences (2021), Airborne Platforms to Advance NASA Earth System Science Priorities: Assessing the Future Need for a Large Aircraft, The National Academies Press, doi:10.17226/26079.
Nault, B., et al. (2020), Interferences with aerosol acidity quantification due to gas-phase ammonia uptake onto acidic sulfate filter samples, Atmos. Meas. Tech., 13, 6193-6213, doi:10.5194/amt-13-6193-2020.
Nault, B., et al. (2021), Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere, Commun Earth Environ, 2, doi:10.1038/s43247-021-00164-0.
Naus, S., et al. (2021), A 3D-model inversion of methyl chloroform to constrain the atmospheric oxidative capacity, Atmos. Chem. Phys., doi:10.5194/acp-2020-624.
Novak, G., et al. (2021), Rapid cloud removal of dimethyl sulfide oxidation products limits SO2 and cloud condensation nuclei production in the marine atmosphere, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2110472118.
Orbe, C., et al. (2021), Tropospheric Age-of-Air: Influence of SF6 Emissions on Recent Surface Trends and Model Biases, J. Geophys. Res., 126, e2021JD035451, doi:10.1029/2021JD035451.
Pai, S. J., et al. (2020), An evaluation of global organic aerosol schemes using airborne observations, Atmos. Chem. Phys., 20, 2637-2665, doi:10.5194/acp-20-2637-2020.
Palmer, P., et al. (2022), Nocturnal survival of isoprene linked to formation of upper tropospheric organic aerosol, Science, 375, 562-566.
Parker, H. A., et al. (2023), Inferring the vertical distribution of CO and CO2 from TCCON total column values using the TARDISS algorithm, Atmos. Meas. Tech., 16, 2601-2625, doi:10.5194/amt-16-2601-2023.
Payne, V., et al. (2022), Satellite measurements of peroxyacetyl nitrate from the Cross-Track Infrared Sounder: comparison with ATom aircraft measurements, Atmos. Meas. Tech., 15, 3497-3511, doi:10.5194/amt-15-3497-2022.
Peiro, H., et al. (2022), Four years of global carbon cycle observed from the Orbiting Carbon Observatory 2 (OCO-2) version 9 and in situ data and comparison to OCO-2 version 7, Atmos. Chem. Phys., doi:10.5194/acp-22-1097-2022.
Pieber, S. M., et al. (2016), Inorganic Salt Interference on CO2+ in Aerodyne AMS and ACSM Organic Aerosol Composition Studies, Environ. Sci. Technol., 50, 10494-10503, doi:10.1021/acs.est.6b01035.

Pages