Publication Citation
Allen, H., et al. (2022), H2O2 and CH3OOH (MHP) in the Remote Atmosphere: 2. Physical and Chemical Controls, J. Geophys. Res., 127, doi:10.1029/2021JD035702.
Allen, H., et al. (2022), H2O2 and CH3OOH (MHP) in the Remote Atmosphere: 1. Global Distribution and Regional Influences, J. Geophys. Res., 127, doi:10.1029/2021JD035701.
Anderson, D., et al. (2021), Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-scale climate features and their influence on OH through its dynamical and photochemical drivers, Atmos. Chem. Phys., 21, 6481-6508, doi:10.5194/acp-21-6481-2021.
Asher, L., et al. (2019), Novel approaches to improve estimates of short-lived halocarbon emissions during summer from the Southern Ocean using airborne observations, Atmos. Chem. Phys., 19, 14071-14090, doi:10.5194/acp-19-14071-2019.
Bates, K. H., et al. (2021), The Global Budget of Atmospheric Methanol: New Constraints on Secondary, Oceanic, and Terrestrial Sources, J. Geophys. Res., 126, doi:10.1029/2020JD033439.
Baublitz, C., et al. (2022), Formaldehyde as a Proxy for Hydroxyl Radical Variability in the Remote Troposphere, J. Geophys. Res. (submitted).
Benavent, N., et al. (2022), Substantial contribution of iodine to Arctic ozone destruction, Nature Geoscience, 15, 770-773, doi:10.1038/s41561-022-01018-w.
Bian, H., et al. (2019), Observationally constrained analysis of sea salt aerosol in the marine atmosphere, Atmos. Chem. Phys., 19, 10773-10785, doi:10.5194/acp-19-10773-2019.
Birner, B., et al. (2020), Gravitational separation of Ar/N2 and age of air in the lowermost stratosphere in airborne observations and a chemical transport model, Atmos. Chem. Phys., doi:10.5194/acp-2020-95.
Bourgeois, I., et al. (2020), Global-scale distribution of ozone in the remote troposphere from ATom and HIPPO airborne field missions., Atmos. Chem. Phys., doi:10.5194/acp-2020-315.
Bourgeois, I., et al. (2022), Large contribution of biomass burning emissions to ozone throughout the global remote troposphere, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2109628118.
Brewer, J., et al. (2020), Evidence for an Oceanic Source of Methyl Ethyl Ketone to the Atmosphere, J. Geophys. Res., 60273, Article, doi:10.1029/2019GL086045.
Brock, C., et al. (2019), Aerosol size distributions during the Atmospheric Tomography Mission (ATom): methods, uncertainties, and data products, Atmos. Meas. Tech., 12, 3081-3099, doi:10.5194/amt-12-3081-2019.
Brock, C., et al. (2021), Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements, Atmos. Chem. Phys., 21, 15023-15063, doi:10.5194/acp-21-15023-2021.
Brune, W. H., et al. (2020), Exploring Oxidation in the Remote Free Troposphere: Insights From Atmospheric Tomography (ATom), J. Geophys. Res., 125, doi:10.1029/2019JD031685.
Chen, X., et al. (2019), On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America, Atmos. Chem. Phys., 19, 9097-9123, doi:10.5194/acp-19-9097-2019.
Chen, X., et al. (2021), HCOOH in the Remote Atmosphere: Constraints from Atmospheric Tomography (ATom) Airborne Observations, ACS Earth Space Chem., doi:10.1021/acsearthspacechem.1c00049.
Chen, Z., et al. (2021), Five years of variability in the global carbon cycle: comparing an estimate from the Orbiting Carbon Observatory-2 and process-based models, Environ. Res. Lett., 16, doi:10.1088/1748-9326/abfac1.
Chen, Z., et al. (2021), Linking global terrestrial CO2 fluxes and environmental drivers: inferences from the Orbiting Carbon Observatory 2 satellite and terrestrial biospheric models, Atmos. Chem. Phys., 21, 6663-6680, doi:10.5194/acp-21-6663-2021.
Chevallier, F., et al. (2019), Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions, Atmos. Chem. Phys., 19, 14233-14251, doi:10.5194/acp-19-14233-2019.

Pages