The following papers are associated with the ATom mission.

Publication Citation
Bian, H., et al. (2019), Observationally constrained analysis of sea salt aerosol in the marine atmosphere 3, Atmos. Chem. Phys., doi:10.5194/acp-2019-18.
Brock, C., et al. (2019), Aerosol size distributions during the Atmospheric Tomography (ATom) mission: methods, uncertainties, and data products, Atmos. Meas. Tech., doi:10.5194/amt-2019-44.
Ditas, J., et al. (2018), Strong impact of wildfires on the abundance and aging of black carbon in the lowermost stratosphere, Proc. Natl. Acad. Sci., 811595-11603, doi:10.1073/pnas.1806868115.
Fisher, J. A., et al. (2018), Methyl, Ethyl, and Propyl Nitrates: Global Distribution and Impacts on Reactive Nitrogen in Remote Marine Environments, J. Geophys. Res., 123, 12,429-12,451, doi:10.1029/2018JD029046.
Hall, S. R., et al. (2018), Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission, Atmos. Chem. Phys., 18, 16809-16828, doi:10.5194/acp-18-16809-2018.
Hall, S. R., et al. (2019), Atom: Global Modeled and CAFS Measured Cloudy and Clear Sky Photolysis Rates, 2016. ORNL DAAC, Oak Ridge, Tennessee, Ornl Daac, doi:10.3334/ORNLDAAC/1651.
Hodshire, A., et al. (2019), The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings, Atmos. Chem. Phys., 19, 3137-3160, doi:10.5194/acp-19-3137-2019.
Hodzic, A., et al. (2016), Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime, Atmos. Chem. Phys., 16, 7917-7941, doi:10.5194/acp-16-7917-2016.
Katich, J., et al. (2018), Strong Contrast in Remote Black Carbon Aerosol Loadings Between the Atlantic and Pacific Basins, J. Geophys. Res., 123, 13,386-13,395, doi:10.1029/2018JD029206.
Kupc, A., et al. (2018), Modification, calibration, and performance of the Ultra-High Sensitivity Aerosol Spectrometer for particle size distribution and volatility measurements during the Atmospheric Tomography Mission (ATom) airborne campaign, Atmos. Meas. Tech., 11, 369-383, doi:10.5194/amt-11-369-2018.
Lund, M. T., et al. (2019), Short Black Carbon lifetime inferred from a global set of aircraft observations, Nature, doi:10.1038/s41612-018-0040-x.
Murphy, D., et al. (2018), An aerosol particle containing enriched uranium encountered in the remote T upper troposphere, Journal of Environmental Radioactivity, 184–185, 95-100, doi:10.1016/j.jenvrad.2018.01.006.
Murphy, D., et al. (2019), The distribution of sea-salt aerosol in the global troposphere, Atmos. Chem. Phys., 19, 4093-4104, doi:10.5194/acp-19-4093-2019.
Pai, S. J., et al. (2019), An evaluation of global organic aerosol schemes using airborne observations, Atmos. Chem. Phys. Discuss., in review, doi:10.5194/acp-2019-331 (submitted).
Pieber, S. M., et al. (2016), Inorganic Salt Interference on CO2+ in Aerodyne AMS and ACSM Organic Aerosol Composition Studies, Environ. Sci. Technol., 50, 10494-10503, doi:10.1021/acs.est.6b01035.
Prather, M., et al. (2017), Global atmospheric chemistry – which air matters, Atmos. Chem. Phys., 17, 9081-9102, doi:10.5194/acp-17-9081-2017.
Prather, M., et al. (2018), How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition, Atmos. Meas. Tech., 11, 2653-2668, doi:10.5194/amt-11-2653-2018.
Spanu, A., et al. (2019), Flow-induced errors in airborne in-situ measurements of aerosols and clouds, Atmos. Meas. Tech., 2019, doi:10.5194/amt-2019-27.
St. Clair, J. M., et al. (2019), CAFE: a new, improved non-resonant laser-induced fluorescence instrument for airborne in situ measurement of formaldehyde, Atmos. Meas. Tech., doi:10.5194/amt-2019-153.
Strode, S., et al. (2018), Forecasting carbon monoxide on a global scale for the ATom-1 aircraft mission: insights from airborne and satellite observations and modeling, Atmos. Chem. Phys., 18, 10955-10971, doi:10.5194/acp-18-10955-2018.

Pages