The following papers are associated with the ATom mission.

Publication Citation
Asher, L., et al. (2019), Novel approaches to improve estimates of short-lived halocarbon emissions during summer from the Southern Ocean using airborne observations, Atmos. Chem. Phys., 19, 14071-14090, doi:10.5194/acp-19-14071-2019.
Bian, H., et al. (2019), Observationally constrained analysis of sea salt aerosol in the marine atmosphere 3, Atmos. Chem. Phys., doi:10.5194/acp-2019-18.
Brock, C., et al. (2019), Aerosol size distributions during the Atmospheric Tomography (ATom) mission: methods, uncertainties, and data products, Atmos. Meas. Tech., doi:10.5194/amt-2019-44.
Chevallier, F., et al. (2019), Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions, Atmos. Chem. Phys., 19, 14233-14251, doi:10.5194/acp-19-14233-2019.
Crowell, S., et al. (2019), The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network, Atmos. Chem. Phys., 19, 9797-9831, doi:10.5194/acp-19-9797-2019.
Deeter, M., et al. (2019), Radiance-based retrieval bias mitigation for the MOPITT instrument: the version 8 product, Atmos. Meas. Tech., 12, 4561-4580, doi:10.5194/amt-12-4561-2019.
Ditas, J., et al. (2018), Strong impact of wildfires on the abundance and aging of black carbon in the lowermost stratosphere, Proc. Natl. Acad. Sci., 811595-11603, doi:10.1073/pnas.1806868115.
Fisher, J. A., et al. (2018), Methyl, Ethyl, and Propyl Nitrates: Global Distribution and Impacts on Reactive Nitrogen in Remote Marine Environments, J. Geophys. Res., 123, 12,429-12,451, doi:10.1029/2018JD029046.
Froyd, K., et al. (2019), A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry, Atmos. Meas. Tech., 12, 6209-6239, doi:10.5194/amt-12-6209-2019.
Hall, S. R., et al. (2018), Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission, Atmos. Chem. Phys., 18, 16809-16828, doi:10.5194/acp-18-16809-2018.
Hall, S. R., et al. (2019), Atom: Global Modeled and CAFS Measured Cloudy and Clear Sky Photolysis Rates, 2016. ORNL DAAC, Oak Ridge, Tennessee, Ornl Daac, doi:10.3334/ORNLDAAC/1651.
Hodshire, A., et al. (2019), The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings, Atmos. Chem. Phys., 19, 3137-3160, doi:10.5194/acp-19-3137-2019.
Hodzic, A., et al. (2016), Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime, Atmos. Chem. Phys., 16, 7917-7941, doi:10.5194/acp-16-7917-2016.
Katich, J., et al. (2018), Strong Contrast in Remote Black Carbon Aerosol Loadings Between the Atlantic and Pacific Basins, J. Geophys. Res., 123, 13,386-13,395, doi:10.1029/2018JD029206.
Kupc, A., et al. (2018), Modification, calibration, and performance of the Ultra-High Sensitivity Aerosol Spectrometer for particle size distribution and volatility measurements during the Atmospheric Tomography Mission (ATom) airborne campaign, Atmos. Meas. Tech., 11, 369-383, doi:10.5194/amt-11-369-2018.
Lund, M. T., et al. (2019), Short Black Carbon lifetime inferred from a global set of aircraft observations, Nature Clim Atmos Sci, doi:10.1038/s41612-018-0040-x.
Murphy, D., et al. (2018), An aerosol particle containing enriched uranium encountered in the remote T upper troposphere, Journal of Environmental Radioactivity, 184–185, 95-100, doi:10.1016/j.jenvrad.2018.01.006.
Murphy, D., et al. (2019), The distribution of sea-salt aerosol in the global troposphere, Atmos. Chem. Phys., 19, 4093-4104, doi:10.5194/acp-19-4093-2019.
Pai, S. J., et al. (2019), An evaluation of global organic aerosol schemes using airborne observations, Atmos. Chem. Phys. Discuss., in review, doi:10.5194/acp-2019-331 (submitted).
Pieber, S. M., et al. (2016), Inorganic Salt Interference on CO2+ in Aerodyne AMS and ACSM Organic Aerosol Composition Studies, Environ. Sci. Technol., 50, 10494-10503, doi:10.1021/acs.est.6b01035.

Pages