Publication Citation
Guo, H., et al. (2021), Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements, Atmos. Chem. Phys., 21, 13729-13746, doi:10.5194/acp-21-13729-2021.
Guo, H., et al. (2021), The importance of size ranges in aerosol instrument intercomparisons: a case study for the Atmospheric Tomography Mission, Atmos. Meas. Tech., 14, 3631-3655, doi:10.5194/amt-14-3631-2021.
Guo, H., et al. (2023), Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected, Atmos. Chem. Phys., 23, 99-117, doi:10.5194/acp-23-99-2023.
Hall, S. R., et al. (2018), Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission, Atmos. Chem. Phys., 18, 16809-16828, doi:10.5194/acp-18-16809-2018.
He, Y., H. M. S. Hoque, and K. Sudo (2022), Introducing new lightning schemes into the CHASER (MIROC) chemistry–climate model, Geosci. Model. Dev., 15, 5627-5650, doi:10.5194/gmd-15-5627-2022.
Hegarty, J., et al. (2022), Validation and error estimation of AIRS MUSES CO profiles with HIPPO, ATom, and NOAA GML aircraft observations, Atmos. Meas. Tech., 15, 205-223, doi:10.5194/amt-15-205-2022.
Hintsa, E., et al. (2021), UAS Chromatograph for Atmospheric Trace Species (UCATS) – a versatile instrument for trace gas measurements on airborne platforms, Atmos. Meas. Tech., 14, 6795-6819, doi:10.5194/amt-14-6795-2021.
Hodshire, A., et al. (2019), The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings, Atmos. Chem. Phys., 19, 3137-3160, doi:10.5194/acp-19-3137-2019.
Hodzic, A., et al. (2016), Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime, Atmos. Chem. Phys., 16, 7917-7941, doi:10.5194/acp-16-7917-2016.
Hodzic, A., et al. (2020), Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models, Atmos. Chem. Phys., 20, 4607-4635, doi:10.5194/acp-20-4607-2020.
Hu, L., et al. (2022), Continental-scale contributions to the global CFC-11 emission increase between 2012 and 2017, Atmos. Chem. Phys., doi:10.5194/acp-22-2891-2022.
Jesswein, M., et al. (2022), Global seasonal distribution of CH2 Br2 and CHBr3 in the upper troposphere and lower stratosphere, Atmos. Chem. Phys., doi:10.5194/acp-22-15049-2022.
Jin, Y., et al. (2021), A mass-weighted isentropic coordinate for mapping chemical tracers and computing atmospheric inventories, Atmos. Chem. Phys., 21, 217-238, doi:10.5194/acp-21-217-2021.
Jin, Y., et al. (2024), Improved atmospheric constraints on Southern Ocean CO2 exchange, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2309333121.
Katich, J., et al. (2018), Strong Contrast in Remote Black Carbon Aerosol Loadings Between the Atlantic and Pacific Basins, J. Geophys. Res., 123, 13,386-13,395, doi:10.1029/2018JD029206.
Katich, J., et al. (2023), Pyrocumulonimbus affect average stratospheric aerosol composition, Science, 379, 815-820, doi:10.1126/science.add3101.
Koenig, T., et al. (2020), Quantitative detection of iodine in the stratosphere, Proc. Natl. Acad. Sci., 117, doi:10.1073/pnas.1916828117.
Kort, E., and K. McKain (2023), Aircraft vertical profile measurements for evaluation of satellite retrievals of long-lived trace gases, Field Measurements for Passive Environmental Remote Sensing, 235-244, doi:10.1016/B978-0-12-823953-7.00020-4.
Krysztofiak, G., et al. (2023), N2O Temporal Variability from the Middle Troposphere to the Middle Stratosphere Based on Airborne and Balloon-Borne Observations during the Period 1987–2018, Atmosphere, 14, 585, doi:10.3390/atmos14030585.
Kulawik, S., et al. (2021), Evaluation of single-footprint AIRS CH4 profile retrieval uncertainties using aircraft profile measurements, Atmos. Meas. Tech., 14, 335-354, doi:10.5194/amt-14-335-2021.