Publication Citation
Ditas, J., et al. (2018), Strong impact of wildfires on the abundance and aging of black carbon in the lowermost stratosphere, Proc. Natl. Acad. Sci., 811595-11603, doi:10.1073/pnas.1806868115.
Fisher, J. A., et al. (2018), Methyl, Ethyl, and Propyl Nitrates: Global Distribution and Impacts on Reactive Nitrogen in Remote Marine Environments, J. Geophys. Res., 123, 12,429-12,451, doi:10.1029/2018JD029046.
Froyd, K., et al. (2019), A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry, Atmos. Meas. Tech., 12, 6209-6239, doi:10.5194/amt-12-6209-2019.
Froyd, K., et al. (2022), Dominant role of mineral dust in cirrus cloud formation revealed by global-scale measurements, Nat. Geosci., 15, 177-183, doi:10.1038/s41561-022-00901-w.
Fung, K. M., et al. (2022), Exploring dimethyl sulfide (DMS) oxidation and implications for global aerosol radiative forcing, Atmos. Chem. Phys., doi:10.5194/acp-22-1549-2022.
Gonzalez, A., et al. (2022), Fossil Versus Nonfossil CO Sources in the US: New Airborne Constraints From ACT-America and GEM, Geophys. Res. Lett..
Gonzalez, Y., et al. (2021), Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom, Atmos. Chem. Phys., 21, 11113-11132, doi:10.5194/acp-21-11113-2021.
Guo, H., et al. (2021), Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements, Atmos. Chem. Phys., 21, 13729-13746, doi:10.5194/acp-21-13729-2021.
Guo, H., et al. (2021), The importance of size ranges in aerosol instrument intercomparisons: a case study for the Atmospheric Tomography Mission, Atmos. Meas. Tech., 14, 3631-3655, doi:10.5194/amt-14-3631-2021.
Hall, S. R., et al. (2018), Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission, Atmos. Chem. Phys., 18, 16809-16828, doi:10.5194/acp-18-16809-2018.
Hegarty, J., et al. (2022), Validation and error estimation of AIRS MUSES CO profiles with HIPPO, ATom, and NOAA GML aircraft observations, Atmos. Meas. Tech., 15, 205-223, doi:10.5194/amt-15-205-2022.
Hintsa, E., et al. (2021), UAS Chromatograph for Atmospheric Trace Species (UCATS) – a versatile instrument for trace gas measurements on airborne platforms, Atmos. Meas. Tech., 14, 6795-6819, doi:10.5194/amt-14-6795-2021.
Hodshire, A., et al. (2019), The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings, Atmos. Chem. Phys., 19, 3137-3160, doi:10.5194/acp-19-3137-2019.
Hodzic, A., et al. (2016), Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime, Atmos. Chem. Phys., 16, 7917-7941, doi:10.5194/acp-16-7917-2016.
Hodzic, A., et al. (2020), Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models, Atmos. Chem. Phys., 20, 4607-4635, doi:10.5194/acp-20-4607-2020.
Hu, L., et al. (2022), Continental-scale contributions to the global CFC-11 emission increase between 2012 and 2017, Atmos. Chem. Phys., doi:10.5194/acp-22-2891-2022.
Jin, Y., et al. (2021), A mass-weighted isentropic coordinate for mapping chemical tracers and computing atmospheric inventories, Atmos. Chem. Phys., 21, 217-238, doi:10.5194/acp-21-217-2021.
Katich, J., et al. (2018), Strong Contrast in Remote Black Carbon Aerosol Loadings Between the Atlantic and Pacific Basins, J. Geophys. Res., 123, 13,386-13,395, doi:10.1029/2018JD029206.
Koenig, T., et al. (2020), Quantitative detection of iodine in the stratosphere, Proc. Natl. Acad. Sci., 117, doi:10.1073/pnas.1916828117.
Kulawik, S., et al. (2021), Evaluation of single-footprint AIRS CH4 profile retrieval uncertainties using aircraft profile measurements, Atmos. Meas. Tech., 14, 335-354, doi:10.5194/amt-14-335-2021.

Pages