Publication Citation
Chen, X., et al. (2021), HCOOH in the Remote Atmosphere: Constraints from Atmospheric Tomography (ATom) Airborne Observations, ACS Earth Space Chem., doi:10.1021/acsearthspacechem.1c00049.
Chen, Z., et al. (2021), Five years of variability in the global carbon cycle: comparing an estimate from the Orbiting Carbon Observatory-2 and process-based models, Environ. Res. Lett., 16, doi:10.1088/1748-9326/abfac1.
Chen, Z., et al. (2021), Linking global terrestrial CO2 fluxes and environmental drivers: inferences from the Orbiting Carbon Observatory 2 satellite and terrestrial biospheric models, Atmos. Chem. Phys., 21, 6663-6680, doi:10.5194/acp-21-6663-2021.
Chevallier, F., et al. (2019), Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions, Atmos. Chem. Phys., 19, 14233-14251, doi:10.5194/acp-19-14233-2019.
Choudhury, G., A. Ansmann, and M. Tesche (2022), Evaluation of aerosol number concentrations from CALIPSO with ATom airborne in situ measurements, Atmos. Chem. Phys., 22, 7143-7161, doi:10.5194/acp-22-7143-2022.
Crowell, S., et al. (2019), The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network, Atmos. Chem. Phys., 19, 9797-9831, doi:10.5194/acp-19-9797-2019.
Deeter, M., et al. (2019), Radiance-based retrieval bias mitigation for the MOPITT instrument: the version 8 product, Atmos. Meas. Tech., 12, 4561-4580, doi:10.5194/amt-12-4561-2019.
Deeter, M., et al. (2022), The MOPITT Version 9 CO product: sampling enhancements and validation, Atmos. Meas. Tech., 15, 2325-2344, doi:10.5194/amt-15-2325-2022.
Ditas, J., et al. (2018), Strong impact of wildfires on the abundance and aging of black carbon in the lowermost stratosphere, Proc. Natl. Acad. Sci., 811595-11603, doi:10.1073/pnas.1806868115.
Fiore, A. M., et al. (2024), Climate and Tropospheric Oxidizing Capacity, Annual Review of Earth and Planetary Sciences, 52, doi:10.1146/annurev-earth-032320-090307.
Fisher, J. A., et al. (2018), Methyl, Ethyl, and Propyl Nitrates: Global Distribution and Impacts on Reactive Nitrogen in Remote Marine Environments, J. Geophys. Res., 123, 12,429-12,451, doi:10.1029/2018JD029046.
Froyd, K., et al. (2019), A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry, Atmos. Meas. Tech., 12, 6209-6239, doi:10.5194/amt-12-6209-2019.
Froyd, K., et al. (2022), Dominant role of mineral dust in cirrus cloud formation revealed by global-scale measurements, Nat. Geosci., 15, 177-183, doi:10.1038/s41561-022-00901-w.
Fung, K. M., et al. (2022), Exploring dimethyl sulfide (DMS) oxidation and implications for global aerosol radiative forcing, Atmos. Chem. Phys., doi:10.5194/acp-22-1549-2022.
Gao, C., et al. (2022), Remote Aerosol Simulated During the Atmospheric Tomography (ATom) Campaign and Implications for Aerosol Lifetime, J. Geophys. Res., 127, doi:10.1029/2022JD036524.
Gaubert, B., et al. (2023), Global Scale Inversions from MOPITT CO and MODIS AOD, Remote Sens., 15, 4813, doi:10.3390/rs15194813.
Gaubert, B., et al. (2024), Neutral Tropical African CO2 Exchange Estimated From Aircraft and Satellite Observations, Global Biogeochem. Cycles, 37, e2023GB007804, doi:10.1029/2023GB007804.
Gonzalez, A., et al. (2022), Fossil Versus Nonfossil CO Sources in the US: New Airborne Constraints From ACT-America and GEM, Geophys. Res. Lett..
Gonzalez, Y., et al. (2021), Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom, Atmos. Chem. Phys., 21, 11113-11132, doi:10.5194/acp-21-11113-2021.
Guan, J., et al. (2021), Global Surface HCHO Distribution Derived from Satellite Observations with Neural Networks Technique, Remote Sens., 13, 4055, doi:10.3390/rs13204055.

Pages