Publication Citation
Bhattacharya, A., A. Chakraborty, and V. Venugopal (2014), Variability of cloud liquid water and ice over South Asia from TMI estimates, Clim. Dyn., 42, 2411-2421, doi:10.1007/s00382-013-1978-3.
Blanchard, Y., et al. (2014), A Synergistic Analysis of Cloud Cover and Vertical Distribution from A-Train and Ground-Based Sensors over the High Arctic Station Eureka from 2006 to 2010, J. Appl. Meteor. Climat., 53, 2553-2570, doi:10.1175/JAMC-D-14-0021.1.
Bodas-Salcedo, A., et al. (2008), Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities, J. Geophys. Res., 113, D00A13, doi:10.1029/2007JD009620.
Bodas-Salcedo, A., et al. (2011), Cosp: Satellite simulation software for model assessment, Bull. Am. Meteorol. Soc., 1023-1043, doi:10.1175/2011BAMS2856.1.
Boening, C., et al. (2012), Snowfall-driven mass change on the East Antarctic ice sheet, Geophys. Res. Lett., 39, L21501, doi:10.1029/2012GL053316.
Bogenschutz, P. A., et al. (2013), Higher-Order Turbulence Closure and Its Impact on Climate Simulations in the Community Atmosphere Model, J. Climate, 26, 9655-9676, doi:10.1175/JCLI-D-13-00075.1.
Booth, J. F., C. M. Naud, and A. Del Genio (2013), Diagnosing Warm Frontal Cloud Formation in a GCM: A Novel Approach Using Conditional Subsetting, J. Climate, 26, 5827-5845, doi:10.1175/JCLI-D-12-00637.1.
Bouniol, D., et al. (2008), Comparison of Airborne and Spaceborne 95-GHz Radar Reflectivities and Evaluation of Multiple Scattering Effects in Spaceborne Measurements, J. Atmos. Oceanic Technol., 25, 1983-1995, doi:10.1175/2008JTECHA1011.1.
Bouniol, D., et al. (2012), Diurnal and Seasonal Cycles of Cloud Occurrences, Types, and Radiative Impact over West Africa, J. Appl. Meteor. Climat., 51, 534-553, doi:10.1175/JAMC-D-11-051.1.
Boutle, I. A., et al. (2014), Spatial variability of liquid cloud and rain: observations and microphysical effects, Q. J. R. Meteorol. Soc., 140, 583-594, doi:10.1002/qj.2140.
Brunke, M. A., et al. (2010), A comparison of ship and satellite measurements of cloud properties with global climate model simulations in the southeast Pacific stratus deck, Atmos. Chem. Phys., 10, 6527-6536, doi:10.5194/acp-10-6527-2010.
Buchard-Marchant, V. J., et al. (2017), The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies, J. Climate, 30, 6851-6872, doi:10.1175/JCLI-D-16-0613.1.
Bühl, J., et al. (2013), Toward a quantitative characterization of heterogeneous ice formation with lidar/radar: Comparison of CALIPSO/CloudSat with ground-based observations, Geophys. Res. Lett., 40, 4404-4408, doi:10.1002/grl.50792.
Bush, S. J., et al. (2015), The effect of increased convective entrainment on Asian monsoon biases in the MetUM general circulation model, Q. J. R. Meteorol. Soc., 141, 311-326, doi:10.1002/qj.2371.
Candlish, L. M. (2016), An investigation of atmospheric temperature, humidity and cloud detection technique over the Arctic marine cryosphere, M.S. Thesis, Department of Environment and Geology, University of Manitoba, available at.
Cao, Q., and Y. Qi (2014), The variability of vertical structure of precipitation in Huaihe River Basin of China: Implications from long-term spaceborne observations with TRMM precipitation radar, Water Resour. Res., 50, 3690-3705, doi:10.1002/2013WR014555.
Ceccaldi, M., et al. (2013), From CloudSat-CALIPSO to EarthCare: Evolution of the DARDAR cloud classification and its comparison to airborne radar-lidar observations, J. Geophys. Res., 118, 7962-7981, doi:10.1002/jgrd.50579.
Cermak, J., and J. Bendix (2011), International Journal of Remote Sensing, Aerosol Sci. Tech., doi:10.1080/01431161003747505.
Cesana, G., et al. (2015), Multimodel evaluation of cloud phase transition using satellite and reanalysis data, J. Geophys. Res., 120, 7871-7892, doi:10.1002/2014JD022932.
Cesana, G., et al. (2019), Evaluating models’ response of tropical low clouds to SST forcings using CALIPSO observations, Atmos. Chem. Phys., 19, 2813-2832, doi:10.5194/acp-19-2813-2019.

Pages