Publication Citation
Chae, J. H., et al. (2011), The role of tropical deep convective clouds on temperature, water vapor, and dehydration in the tropical tropopause layer (TTL), Atmos. Chem. Phys., 11, 3811-3821, doi:10.5194/acp-11-3811-2011.
Chakraborty, S., et al. (2016), Relative influence of meteorological conditions and aerosols on the lifetime of mesoscale convective systems, Proc. Natl. Acad. Sci., 7426-7431, doi:10.1073/pnas.1601935113.
Chan, M. A., and J. C. Comiso (2011), Cloud features detected by MODIS but not by CloudSat and CALIOP, Geophys. Res. Lett., 38, L24813, doi:10.1029/2011GL050063.
Chan, M. A., and J. C. Comiso (2013), Arctic Cloud Characteristics as Derived from MODIS, CALIPSO, and CloudSat, J. Climate, 26, 3285-3306, doi:10.1175/JCLI-D-12-00204.1.
Chang, F.-L., et al. (2010), Comparisons of passive satellite-deduced overlapping cloud properties and CALIPSO/CloudSat data, EOS Trans AGU, 91, 22-25.
Chen, A., et al. (2009), Visualization of A-Train vertical profiles using Google Earth, Computers & Geosciences, 35, 419-427, doi:10.1016/j.cageo.2008.08.006.
Chen, R., et al. (2007), Impact of the Vertical Variation of Cloud Droplet Size on the Estimation of Cloud Liquid Water Path and Rain Detection, J. Atmos. Sci., 64, 3843-3853, doi:10.1175/2007JAS2126.1.
Chen, R., et al. (2008), Studying the vertical variation of cloud droplet effective radius using ship and space-borne remote sensing data, J. Geophys. Res., 113, D00A02, doi:10.1029/2007JD009596.
Chen, R., et al. (2011), A study of warm rain detection using A‐Train satellite data, Geophys. Res. Lett., 38, L04804, doi:10.1029/2010GL046217.
Chen, S., et al. (2016), Comparison of Snowfall estimates from the NASA CloudSat Cloud Profiling Radar and NOAA/ NSSL Multi-Radar Multi-Sensor System, Journal of Hydrology, doi:10.1016/j.jhydrol.2016.07.047.
Chen, W., et al. (2010), Global climate response to anthropogenic aerosol indirect effects: Present day and year 2100, J. Geophys. Res., 115, D12207, doi:10.1029/2008JD011619.
Chen, W., et al. (2011), Partitioning CloudSat ice water content for comparison with upper tropospheric ice in global atmospheric models, J. Geophys. Res., 116, D19206, doi:10.1029/2010JD015179.
Chen, Y., et al. (2008), Validation of the Community Radiative Transfer Model by using CloudSat data, J. Geophys. Res., 113, D00A03, doi:10.1029/2007JD009561.
Chen, Y., et al. (2014), Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds, Nature Geoscience, 7, 643-646, doi:10.1038/NGEO2214.
Chern, J., et al. (2016), Performance of the Goddard multiscale modeling framework with Goddard ice microphysical schemes, J. Adv. Modeling Earth Syst., 8, 66-95, doi:10.1002/2015MS000469.
Chosson, F., et al. (2014), Adapting Two-Moment Microphysics Schemes across Model Resolutions: Subgrid Cloud and Precipitation Fraction and Microphysical Sub–Time Step, J. Atmos. Sci., 71, 2635-2653, doi:10.1175/JAS-D-13-0367.1.
Christensen, M. W., and G. L. Stephens (2011), Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: Evidence of cloud deepening, J. Geophys. Res., 116, D03201, doi:10.1029/2010JD014638.
Christensen, M. W., et al. (2013), Radiative Impacts of Free-Tropospheric Clouds on the Properties of Marine Stratocumulus , J. Atmos. Sci., 70, 3102-3118, doi:10.1175/JAS-D-12-0287.1.
Christensen, M. W., et al. (2014), Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds, Geophys. Res. Lett., 41, 6970-6977, doi:10.1002/2014GL061320.
Christensen, M. W., et al. (2016), Datasets: Arctic Observation and Reanalysis Integrated System A New Data Product for Validation and Climate Study, Bull. Am. Meteorol. Soc., 907-915, doi:10.1175/BAMS-D-14-00273.1.

Pages