Publication Citation
Christensen, M. W., G. L. Stephens, and M. Lebsock (2013), Exposing biases in retrieved low cloud properties from CloudSat: A guide for evaluating observations and climate data, J. Geophys. Res., 118, 12120-12131, doi:10.1002/2013JD020224.
Christopher, S., et al. (2009), Satellite Remote Sensing and Mesoscale Modeling of the 2007 Georgia/Florida Fires, Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing, 2, 163-175, doi:10.1109/JSTARS.2009.2026626.
Christopher, S., et al. (2009), Vertical and spatial distribution of dust from aircraft and satellite measurements during the GERBILS field campaign, Geophys. Res. Lett., 36, L06806, doi:10.1029/2008GL037033.
Chung, E., B. Sohn, and J. Schmetz (2008), CloudSat shedding new light on high-reaching tropical deep convection observed with Meteosat, Geophys. Res. Lett., 35, L02814, doi:10.1029/2007GL032516.
Churnside, J., B. J. McCarty, and X. Lu (2013), Subsurface Ocean Signals from an Orbiting Polarization Lidar, Remote Sens., 5, 3457-3475, doi:10.3390/rs5073457.
Comiso, J. C., and D. K. Hall (2016), Climate trends in the Arctic as observed from space, The Cryosphere, doi:10.1002/wcc.277.
Cooper, S. J., et al. (2006), Objective Assessment of the Information Content of Visible and Infrared Radiance Measurements for Cloud Microphysical Property Retrievals over the Global Oceans. Part II: Ice Clouds, J. Appl. Meteor. Climat., 45, 42-62.
Crespo, J. A., and D. Posselt (2016), A-Train-Based Case Study of Stratiform–Convective Transition within a Warm Conveyor Belt, Mon. Wea. Rev., 144, 2069-2084, doi:10.1175/MWR-D-15-0435.1.
Cuesta, J., et al. (2010), Northward bursts of the West African monsoon leading to rainfall over the Hoggar Massif, Algeria, Q. J. R. Meteorol. Soc., 136, 174-189, doi:10.1002/qj.439.
Das, S. K., et al. (2013), CloudSat–CALIPSO characterizations of cloud during the active and the break periods of Indian summer monsoon, Journal of Atmospheric and Solar-Terrestrial Physics, 97, 106-114.
Davis, S. M., C. K. Liang, and K. Rosenlof (2013), Interannual variability of tropical tropopause layer clouds, Geophys. Res. Lett., 40, 2862-2866, doi:10.1002/grl.50512.
de Boer, G., G. Tripoli, and E. W. Eloranta (2008), Preliminary comparison of CloudSAT-derived microphysical quantities with ground-based measurements for mixed-phase cloud research in the Arctic, J. Geophys. Res., 113, D00A06, doi:10.1029/2008JD010029.
Del Genio, A. (2012), Representing the Sensitivity of Convective Cloud Systems to Tropospheric Humidity in General Circulation Models, Surv. Geophys., 33, 637-656, doi:10.1007/s10712-011-9148-9.
Del Genio, A., and Y. Chen (2015), Cloud-radiative driving of the Madden-Julian oscillation as seen by the A-Train, J. Geophys. Res., 120, 5344-5356, doi:10.1002/2015JD023278.
Del Genio, A., et al. (2012), The MJO Transition from Shallow to Deep Convection in CloudSat/CALIPSO Data and GISS GCM Simulations, J. Climate, 25, 3755-3770, doi:10.1175/JCLI-D-11-00384.1.
Delano, J., et al. (2013), Comparison of Airborne In Situ, Airborne Radar–Lidar, and Spaceborne Radar–Lidar Retrievals of Polar Ice Cloud Properties Sampled during the POLARCAT Campaign, J. Atmos. Oceanic Technol., 30, 57-73, doi:10.1175/JTECH-D-11-00200.1.
Delanoë, J., and R. J. Hogan (2010), Combined CloudSat‐CALIPSO‐MODIS retrievals of the properties of ice clouds, J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.
Delanöe, J., et al. (2011), Evaluation of ice cloud representation in the ECMWF and UK Met Office models using CloudSat and CALIPSO data, Q. J. R. Meteorol. Soc., 137, 2064-2078, doi:10.1175/JCLI-D-11-00384.1.
Deng, M., et al. (2013), Evaluation of Several A-Train Ice Cloud Retrieval Products with In Situ Measurements Collected during the SPARTICUS Campaign, J. Appl. Meteor. Climat., 52, 1014-1030, doi:10.1175/JAMC-D-12-054.1.
Deng, M., et al. (2015), CloudSat 2C-ICE product update with a new Ze parameterization in lidar-only region, J. Geophys. Res., 120, 12,198-12,208, doi:10.1002/2015JD023600.

Pages