Publication Citation
Lu, X., et al. (2018), Short Communication Opportunities and challenges of applications of satellite-derived sun-induced fluorescence at relatively high spatial resolution, Science of the Total Environment, 619–620, 649-653, doi:10.1016/j.scitotenv.2017.11.158.
Luus, K. A., et al. (2017), Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence, Geophys. Res. Lett., 44, 1564-1573, doi:10.1002/2016GL070842.
Magney, T. S., et al. (2019), Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence, Proc. Natl. Acad. Sci., doi:10.
Massie, S., et al. (2017), Observational evidence of 3-D cloud effects in OCO-2 CO2 retrievals, J. Geophys. Res., 122, 7064-7085, doi:10.1002/2016JD026111.
Menang, K. P. (2019), Sensitivity of near-infrared transmittance calculations for remote sensing applications to recent changes in spectroscopic information, The Author. Atmospheric Science Letters, 20, e942, doi:10.1002/asl.942.
Menang, K. P. (2019), RESEARCH ARTICLE Updates of HITRAN spectroscopic database from 2008 to 2016 and implications for near-infrared radiative transfer calculations, Q. J. R. Meteorol. Soc., 7, 1-10, doi:10.1002/qj.3498.
Merrelli, A., et al. (2015), Estimating bias in the OCO-2 retrieval algorithm caused by 3-D radiation scattering from unresolved boundary layer clouds, Atmos. Meas. Tech., 8, 1641-1656, doi:10.5194/amt-8-1641-2015.
Michalak, A. M., N. A. Randazzo, and F. Chevallier (2017), Diagnostic methods for atmospheric inversions of long-lived greenhouse gases, Atmos. Chem. Phys., 17, 7405-7421, doi:10.5194/acp-17-7405-2017.
Miller, S. M., and A. M. Michalak (2020), The impact of improved satellite retrievals on estimates of biospheric carbon balance, Atmos. Chem. Phys., 20, 323-331, doi:10.5194/acp-20-323-2020.
Miller, S. M., et al. (2018), Characterizing biospheric carbon balance using CO2 observations from the OCO-2 satellite, Atmos. Chem. Phys., 18, 6785-6799, doi:10.5194/acp-18-6785-2018.
Nelson, R. R., et al. (2016), The potential of clear-sky carbon dioxide satellite retrievals, Atmos. Meas. Tech., 9, 1671-1684, doi:10.5194/amt-9-1671-2016.
Nguyen, H., N. A. Cressie, and J. Hobbs (2019), National Institute for Applied Statistics Research Australia University of Wollongong, Australia Working Paper 03 -19, National Institute for Applied Statistics Research Australia, University of Wollongong.
O'Dell, C., et al. (2018), Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm, Atmos. Meas. Tech., 11, 6539-6576, doi:10.5194/amt-11-6539-2018.
Observatory, O. C., et al. (2020), Observing carbon dioxide emissions over China’s cities with the, Atmos. Chem. Phys., doi:10.5194/acp-2020-123.
Odintsova, T. A., et al. (2017), Highly accurate intensity factors of pure CO2 lines near 2 µm, J. Chem. Phys., 146, 244309, doi:10.1063/1.4989925.
Oh, Y., et al. (2018), Characteristics of greenhouse gas concentrations derived from ground-based FTS spectra at Anmyeondo, South Korea, Atmos. Meas. Tech., 11, 2361-2374, doi:10.5194/amt-11-2361-2018.
Oshio, H., et al. (2019), On the zero-level offset in the GOSAT TANSO-FTS O2 A band and the quality of solar-induced chlorophyll fluorescence (SIF): comparison of SIF between GOSAT and OCO-2, Atmos. Meas. Tech., 12, 6721-6735, doi:10.5194/amt-12-6721-2019.
Oyafuso, F., et al. (2017), High accuracy absorption coefficients for the Orbiting Carbon Observatory-2 (OCO-2) mission: Validation of updated carbon dioxide cross-sections using atmospheric spectra, J. Quant. Spectrosc. Radiat. Transfer, Observatory-2, mission, doi:10.1016/j.jqsrt.2017.06.012i.
Palmer, P. I., et al. (2020), Net carbon emissions from African biosphere dominate pan-tropical atmospheric CO2 signal, Nature, doi:10.1038/s41467-019-11097-w.
Park, C., et al. (2021), Evaluation of the Potential Use of Satellite-Derived XCO2 in Detecting CO2 Enhancement in Megacities with Limited Ground Observations: A Case Study in Seoul Using Orbiting Carbon Observatory-2. Asia-Pacific, J. Atmos. Sci., 57, 289-299, doi:10.1007/s13143-020-00202-5.

Pages