Publication Citation
Frankenberg, C., et al. (2018), The Chlorophyll Fluorescence Imaging Spectrometer (CFIS), mapping far red T fluorescence from aircraft, Remote Sensing of Environment, 217, 523-536, doi:10.1016/j.rse.2018.08.032.
Friedlingstein, P., et al. (2022), Global Carbon Budget 2021, Earth Syst. Sci. Data, 14, 1917-2005, doi:10.5194/essd-14-1917-2022.
Gao, Y., et al. (2020), The Ability of Sun-Induced Chlorophyll Fluorescence From OCO-2 and MODIS-EVI to Monitor Spatial Variations of Soybean and Maize Yields in the Midwestern USA, Remote Sensing, 12, doi:10.3390/rs12071111.
Gaubert, B., et al. (2019), Global atmospheric CO2 inverse models converging on neutral tropical land exchange, but disagreeing on fossil fuel and atmospheric growth rate, Biogeosciences, 16, 117-134, doi:10.5194/bg-16-117-2019.
Gaubert, B., et al. (2024), Neutral Tropical African CO2 Exchange Estimated From Aircraft and Satellite Observations, Global Biogeochem. Cycles, 37, e2023GB007804, doi:10.1029/2023GB007804.
Geddes, A., and H. Bösch (2015), Tropospheric aerosol profile information from high-resolution oxygen A-band measurements from space, Atmos. Meas. Tech., 8, 859-874, doi:10.5194/amt-8-859-2015.
Ghysels, M., et al. (2017), A variable-temperature cavity ring-down spectrometer with application to line shape analysis of ­CO2 spectra in the 1600 nm region, Appl. Phys. B, 123, 124, doi:10.1007/s00340-017-6686-y.
Gonsamo, A., et al. (2019), Exploring SMAP and OCO-2 observations to monitor soil moisture control on T photosynthetic activity of global drylands and croplands ⁎, Remote Sensing of Environment, 232, 111314, doi:10.1016/j.rse.2019.111314.
Guo, M., et al. (2020), Feasibility of Using MODIS Products to Simulate Sun-Induced Chlorophyll Fluorescence (SIF) in Boreal Forests, Remote Sensing, 12, 680, doi:10.3390/rs12040680.
Guo, M., et al. (2020), Estimation of CO2 Emissions from Wildfires Using OCO-2 Data, Atmosphere, 10, 581, doi:10.3390/atmos10100581.
Hakkarainen, J., et al. (2019), Analysis of Four Years of Global XCO2 Anomalies as Seen by Orbiting Carbon Observatory-2, Remote Sensing, 11, 850, doi:10.3390/rs11070850.
He, W., et al. (2022), China's Terrestrial Carbon Sink Over 2010–2015 Constrained by Satellite Observations of Atmospheric CO2 and Land Surface Variables, J. Geophys. Res..
He, Z., et al. (2020), Spatio-Temporal Mapping of Multi-Satellite Observed Column Atmospheric CO2 Using Precision-Weighted Kriging Method, Remote Sensing, 12, 576, doi:10.3390/rs12030576.
He, Z., et al. (2020), Evidence of Carbon Uptake Associated with Vegetation Greening Trends in Eastern China, Remote Sensing, 12, 2020, doi:10.3390/rs12040718.
Hedelius, J. K., et al. (2018), Southern California megacity CO2, CH4, and CO flux estimates using ground- and space-based remote sensing and a Lagrangian model, Atmos. Chem. Phys., 18, 16271-16291, doi:10.5194/acp-18-16271-2018.
Hedelius, J. K., et al. (2018), Southern California megacity CO2, CH4, and CO flux estimates using ground- and space-based remote sensing and a Lagrangian model, Atmos. Chem. Phys., 18, 16271-16291, doi:10.5194/acp-18-16271-2018.
Heymann, J., et al. (2017), CO2 emission of Indonesian fires in 2015 estimated from satellite-derived atmospheric CO2 concentrations, Geophys. Res. Lett., 44, 1537-1544, doi:10.1002/2016GL072042.
Hill, T., and R. Nassar (2019), Pixel Size and Revisit Rate Requirements for Monitoring Power Plant CO2 Emissions from Space, doi:10.3390/rs11131608.
Jacquemart, D., et al. (2017), 16 Measurements and modeling of O12C17O spectroscopic parameters at 2 mm, J. Quant. Spectrosc. Radiat. Transfer, doi:10.1016/j.jqsrt.2017.03.002.
Jiang, X., and Y. L. Yung (2019), Global patterns of carbon dioxide variability from satellite observations, Annu. Rev. Earth Planet. Sci., 47, 225-245, doi:10.1146/annurev-earth-053018-.

Pages