Publication Citation
(2020), Cropland carbon uptake delayed and reduced by 2019 Midwest floods, AGU Advances, 1, 1, doi:10.1029/2019AV000140.
(2020), Cropland carbon uptake delayed and reduced by 2019 Midwest floods, AGU Advances, 1, 1-15, doi:10.1029/2019AV000140.
(2020), Cropland carbon uptake delayed and reduced by 2019 Midwest floods, AGU Advances, 1, 1-15, doi:10.1029/2019AV000140.
 1 ✉, Y. Z., et al. (2020), Light limitation regulates the response of autumn terrestrial carbon uptake to warming, Nature, doi:10.1038/s41558-020-0806-0.
Agustí-Panareda, A., et al. (2019), Modelling CO2 weather – why horizontal resolution matters, Atmos. Chem. Phys., 19, 7347-7376, doi:10.5194/acp-19-7347-2019.
Bai, W., et al. (2020), A fast and accurate vector radiative transfer model for simulating the near-infrared hyperspectral scattering processes in clear atmospheric conditions, J. Quant. Spectrosc. Radiat. Transfer, 242, 106736, doi:10.1016/j.jqsrt.2019.106736.
Basu, S., et al. (2018), The impact of transport model differences on CO2 surface flux estimates from OCO-2 retrievals of column average CO2, Atmos. Chem. Phys., 18, 7189-7215, doi:10.5194/acp-18-7189-2018.
Basu, S., et al. (2018), The impact of transport model differences on CO2 surface flux estimates from OCO-2 retrievals of column average CO2, Atmos. Chem. Phys., 18, 7189-7215, doi:10.5194/acp-18-7189-2018.
Bell, E., et al. (2020), Evaluation of OCO-2 XCO2 Variability at Local and Synoptic Scales using Lidar and In Situ Observations from the ACT-America Campaigns, J. Geophys. Res., 125, e2019JD031400, doi:10.1029/2019JD031400.
Bovensmann, H., and J. P. Burrows (2017), A Fast Atmospheric Trace Gas Retrieval for Hyperspectral Instruments Approximating Multiple Scattering, doi:10.3390/rs9111159.
Bowman, K. W., et al. (2017), Global and Brazilian carbon response to El Niño Modoki 2011-2010, Earth and Space Science, 4, 637-660, doi:10.1002/2016EA000204.
Bowman, K. W., et al. (2019), Global and Brazilian carbon response to El Niño Modoki 2011-2010, Earth And Space Science, doi:10.1002/ (submitted).
Bruegge, C. J., et al. (2019), Vicarious Calibration of Orbiting Carbon Observatory-2, IEEE Trans. Geosci. Remote Sens., 57, 5135-5145, doi:10.1109/TGRS.2019.2897068.
Bukosa, B., et al. (2017), TCCON Philippines: First Measurement Results, Satellite Data and Model Comparisons in Southeast Asia Voltaire A. Velazco 1,*,† ID Isamu Morino 2 , Osamu Uchino 2 , Akihiro Hori 2 , Matthäus Kiel 3 , ID, doi:10.3390/rs9121228.
Byrne, B., et al. (2017), Sensitivity of CO2 surface flux constraints to observational coverage, J. Geophys. Res., 122, 6672-6694, doi:10.1002/2016JD026164.
Byrne, B., et al. (2021), The Carbon Cycle of Southeast Australia During 2019-2020: Drought, Fires, and Subsequent Recovery, AGU Advances, 2, e2021AV000469., doi:10.1029/2021AV000469.
Castro, A. O., et al. (2020), OCO-2 Solar-Induced Chlorophyll Fluorescence Variability across Ecoregions of the Amazon Basin and the Extreme Drought Effects of El Niño (2015-2016), Remote Sensing, 12, 1202, doi:10.3390/rs12071202.
Chatterjee, A., et al. (2017), R ES E A RC H | R E MO T E S E NS I NG, Science, 358, eaam5776, doi:10.1126/science.aam5776.
Chen, J., et al. (2016), Differential column measurements using compact solar-tracking spectrometers, Atmos. Chem. Phys., 16, 8479-8498, doi:10.5194/acp-16-8479-2016.
Chen, S., et al. (2020), Optimization of the OCO-2 Cloud Screening Algorithm and Evaluation against MODIS and TCCON Measurements over Land Surfaces in Europe and Japan, Adv. Atmos. Sci., 37, 387−398, doi:10.1007/s00376-020-9160-4.

Pages