Publication Citation
Sassen, K., and Z. Wang (2008), Classifying clouds around the globe with the CloudSat radar: 1-year of results, Geophys. Res. Lett., 35, L04805, doi:10.1029/2007GL032591.
Sassen, K., and Z. Wang (2012), The Clouds of the Middle Troposphere: Composition,Radiative Impact, and Global Distribution, Surv. Geophys., 33, 677-691, doi:10.1007/s10712-011-9163-x.
Sassen, K., S. Matrosov, and J. Campbell (2007), CloudSat spaceborne 94 GHz radar bright bands in the melting layer: An attenuation-driven upside-down lidar analog, Geophys. Res. Lett., 34, L16818, doi:10.1029/2007GL030291.
Sassen, K., Z. Wang, and D. Liu (2008), Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements, J. Geophys. Res., 113, D00A12, doi:10.1029/2008JD009972.
Sassen, K., Z. Wang, and D. Liu (2009), Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat, J. Geophys. Res., 114, D00H06, doi:10.1029/2009JD011916.
Sato, K., and H. Okamoto (2006), Characterization of Ze and LDR of nonspherical and inhomogeneous ice particles for 95-GHz cloud radar: Its implication to microphysical retrievals, J. Geophys. Res., 111, D22213, doi:10.1029/2005JD006959.
Sato, K., and H. Okamoto (2011), Refinement of global ice microphysics using spaceborne active sensors, J. Geophys. Res., 116, D20202, doi:10.1029/2011JD015885.
Sato, K., et al. (2009), 95-GHz Doppler radar and lidar synergy for simultaneous ice microphysics and in-cloud vertical air motion retrieval, J. Geophys. Res., 114, D03203, doi:10.1029/2008JD010222.
Sato, K., et al. (2010), Characterization of ice cloud properties obtained by shipborne radar/lidar over the tropical western Pacific Ocean for evaluation of an atmospheric general circulation model, J. Geophys. Res., 115, D15203, doi:10.1029/2009JD012944.
Satoh, M., et al. (2012), Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes, J. Climate, 25, 2178-2191, doi:10.1175/JCLI-D-11-00152.1.
Satoh, M., T. Inoue, and H. Miura (2010), Evaluations of cloud properties of global and local cloud system resolving models using CALIPSO and CloudSat simulators, J. Geophys. Res., 115, D00H14, doi:10.1029/2009JD012247.
Savtchenko, A. (2009), Deep convection and upper-tropospheric humidity: A look from the A-Train, Geophys. Res. Lett., 36, L06814, doi:10.1029/2009GL037508.
Savtchenko, A., et al. (2008), A-Train Data Depot: Bringing Atmospheric Measurements Together, IEEE Trans. Geosci. Remote Sens., 46, 2788-2795, doi:10.1109/TGRS.2008.917600.
Schmidt, G. A., et al. (2014), Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive, J. Adv. Modeling Earth Syst., 6, 141-184, doi:10.1002/2013MS000265.
Schubert, W. H., and B. McNoldy (2016), Application of the Concepts of Rossby Length and Rossby Depth to Tropical Cyclone Dynamics, J. Adv. Modeling Earth Syst..
Schumacher, C. (2011), Thick Anvils as Viewed by the TRMM Precipitation Radar WEI LI Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, J. Climate, 24, 1718-1735, doi:10.1175/2010JCLI3793.1.
Schwartz, M. C., and G. G. Mace (2010), Co‐occurrence statistics of tropical tropopause layer cirrus with lower cloud layers as derived from CloudSat and CALIPSO data, J. Geophys. Res., 115, D20215, doi:10.1029/2009JD012778.
Seiki, T., et al. (2015), Vertical grid spacing necessary for simulating tropical cirrus clouds with a high-resolution atmospheric general circulation model, Geophys. Res. Lett., 42, 4150-4157, doi:10.1002/2015GL064282.
Serrano, D., et al. (2014), Effective cloud optical depth for overcast conditions determined with a UV radiometers, Int. J. Climatol., 34, 3939-3952, doi:10.1002/joc.3953.
Setvák, M., et al. (2013), A-Train observations of deep convective storm tops, Atmos. Res., 123, 229-248, doi:10.1016/j.atmosres.2012.06.020.

Pages