Publications for CloudSat

Publication Citation
Molthan, A.L., and W.A. Petersen (2011), Incorporating Ice Crystal Scattering Databases in the Simulation of Millimeter-Wavelength Radar Reflectivity, J. Atmos. Oceanic Technol., 28, 337-351, doi:10.1175/2010JTECHA1511.1.
Muhlbauer, A., T.P. Ackerman, J.M. Comstock, G.S. Diskin, S.M. Evans, R.P. Lawson, and R.T. Marchand (2014), Impact of large-scale dynamics on the microphysical properties of midlatitude cirrus, J. Geophys. Res., 119, 3976-3996, doi:10.1002/2013JD020035.
Muhlbauer, A., T.P. Ackerman, R.P. Lawson, S. Xie, and Y. Zhang (2015), Evaluation of cloud-resolving model simulations of midlatitude cirrus with ARM and A-train observations, J. Geophys. Res., 120, 6597-6618, doi:10.1002/2014JD022570.
Muhlbauer, A., I.L. McCoy, and R. Wood (2014), Climatology of stratocumulus cloud morphologies: microphysical properties and radiative effects, Atmos. Chem. Phys., 14, 6695-6716, doi:10.5194/acp-14-6695-2014.
Mülmenstädt, J., O. Sourdeval, J. Delanoë, and J. Quaas (2015), Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals, Geophys. Res. Lett., 42, 6502-6509, doi:10.1002/2015GL064604.
Naeger, A.R., S.A. Christopher, R. Ferrare, and Z. Liu (2013), A New Technique Using Infrared Satellite Measurements to Improve the Accuracy of the CALIPSO Cloud-Aerosol Discrimination Method, IEEE Trans. Geosci. Remote Sens., 51, 642-653, doi:10.1109/TGRS.2012.2201161.
Naeger, A.R., S.A. Christopher, and B.T. Johnson (2013), Multiplatform analysis of the radiative effects and heating rates for an intense dust storm on 21 June 2007, J. Geophys. Res., 118, 9316-9329, doi:10.1002/jgrd.50713.
Nagao, T.M., K. Suzuki, and T.Y. Nakajima (2013), Interpretation of Multiwavelength-Retrieved Droplet Effective Radii for Warm Water Clouds in Terms of In-Cloud Vertical Inhomogeneity by Using a Spectral Bin Microphysics Cloud Model, J. Atmos. Sci., 70, 2376-2392, doi:10.1175/JAS-D-12-0225.1.
Nagao1), B.T.M., T.Y. Nakajima1), H. Letu1), and H. Okamoto2) (2014), Cloud Microphysical Properties as Seen from Spaceborne Passive Multi-Spectral Imagers: Interpretation in Terms of Vertical and Horizontal Inhomogeneity by Using Modeling and Other Spaceborne Instruments, pp., 12, Tn_1-Tn_6.
Nair, A.K.M., and K. Rajeev (2014), Multiyear CloudSat and CALIPSO Observations of the Dependence of Cloud Vertical Distribution on Sea Surface Temperature and Tropospheric Dynamics, J. Climate, 27, 672-683, doi:10.1175/JCLI-D-13-00062.1.
Nair, A.K.M., K. Rajeev, S. Sijikumar, and S. Meenu (2011), Characteristics of a persistent “pool of inhibited cloudiness” and its genesis over the Bay of Bengal associated with the Asian summer monsoon, Ann. Geophys., 29, 1247-1252, doi:10.5194/angeo-29-1247-2011.
Nakajima, T.Y., K. Suzuki, and G.L. Stephens (2010), Droplet Growth in Warm Water Clouds Observed by the A-Train. Part II: A Multisensor View, J. Atmos. Sci., 67, 1897-1907, doi:10.1175/2010JAS3276.1.
Nam, C. (2016), Using CALIPSO and CloudSat satellite retrievals to evaluate low-level cloud parameterizations in ECHAM5 for cloud-climate feedback implications Christine Cheung-Wai Nam 88 Berichte zur Erdsystemforschung 2011 Reports on Earth System Science, PhD Thesis, University of Hamburg, Hamburg.
Nam, C.C.W., and J. Quaas (2012), Evaluation of Clouds and Precipitation in the ECHAM5 General Circulation Model Using CALIPSO and CloudSat Satellite Data, J. Climate, 25, 4975-4992, doi:10.1175/JCLI-D-11-00347.1.
Nam, C.C.W., and J. Quaas (2013), Geographically versus dynamically defined boundary layer cloud regimes and their use to evaluate general circulation model cloud parameterizations, Geophys. Res. Lett., 40, 4951-4956, doi:10.1002/grl.50945.
Nam, C.C.W., J. Quaas, R. Neggers, C.S. Drian, and F. Isotta (2014), Evaluation of boundary layer cloud parameterizations in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data, J. Adv. Modeling Earth Syst., 6, 300-314, doi:10.1002/2013MS000277.
Nasrollahi, N., K. Hsu, and S. Sorooshian (2013), An Artificial Neural Network Model to Reduce False Alarms in Satellite Precipitation Products Using MODIS and CloudSat Observations, J. Hydrometeorology, 14, 1872-1883, doi:10.1175/JHM-D-12-0172.1.
Naud, C.M., and Y. Chen (2010), Assessment of ISCCP cloudiness over the Tibetan Plateau using CloudSat‐CALIPSO, J. Geophys. Res., 115, D10203, doi:10.1029/2009JD013053.
Naud, C.M., D.J. Posselt, and S.C. Van Den Heever (2015), A CloudSat–CALIPSO View of Cloud and Precipitation Properties across Cold Fronts over the Global Oceans, J. Climate, 28, 6743-6762, doi:10.1175/JCLI-D-15-0052.1.
Naud, C.M., D.J. Posselt, and S.C. van den Heever (2016), Aerosol optical depth distribution in extratropical cyclones over the Northern Hemisphere oceans, Geophys. Res. Lett., 43, 10,504-10,511, doi:10.1002/2016GL070953.