Publication Citation
Sogacheva, L., et al. (2020), Merging regional and global aerosol optical depth records from major available satellite products, Atmos. Chem. Phys., 20, 2031-2056, doi:10.5194/acp-20-2031-2020.
Taylor, M., et al. (2015), Global aerosol mixtures and their multiyear and seasonal characteristics, Atmos. Environ., 116, 112-129, doi:10.1016/j.atmosenv.2015.06.029.
Tian, B., et al. (2008), Does the Madden-Julian Oscillation influence aerosol variability?, J. Geophys. Res., 113, D12215, doi:10.1029/2007JD009372.
Tian, B., et al. (2011), Modulation of Atlantic aerosols by the Madden‐Julian Oscillation, J. Geophys. Res., 116, D15108, doi:10.1029/2010JD015201.
van der Does, M., et al. (2020), Tropical Rains Controlling Deposition of Saharan Dust Across the North Atlantic Ocean, Geophys. Res. Lett., 47, doi:10.1029/2019GL086867.
van Donkelaar, A., et al. (2010), Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application, Research, 118, 847-855, doi:).
Vant-Hull, B., et al. (2007), The Effects of Scattering Angle and Cumulus Cloud Geometry on Satellite Retrievals of Cloud Droplet Effective Radius, IEEE Trans. Geosci. Remote Sens., 45, 1039-1045, doi:10.1109/TGRS.2006.890416.
Várnai, T., and A. Marshak (2001), Statistical Analysis of the Uncertainties in Cloud Optical Depth Retrievals Caused by Three-Dimensionál Radíative Effects, J. Atmos. Sci., 58, 1540-1548.
Várnai, T., and A. Marshak (2002), Observations of Three-Dimensional Radiative Effects that Influence MODIS Cloud Optical Thicknéss Rétrievals, J. Atmos. Sci., 59, 1607-1618.
Várnai, T., and A. Marshak (2007), View angle dependence of cloud optical thicknesses retrieved by Moderate Resolution Imaging Spectroradiometer (MODIS), J. Geophys. Res., 112, D06203, doi:10.1029/2005JD006912.
Várnai, T., and A. Marshak (2009), MODIS observations of enhanced clear sky reflectance near clouds, Geophys. Res. Lett., 36, L06807, doi:10.1029/2008GL037089.
Várnai, T., and A. Marshak (2012), Analysis of co-located MODIS and CALIPSO observations near clouds, Atmos. Meas. Tech., 5, 389-396, doi:10.5194/amt-5-389-2012.
Várnai, T., and A. Marshak (2021), Analysis of Near-Cloud Changes in Atmospheric Aerosols Using Satellite Observations and Global Model Simulations, Remote Sens., 13, 1151, doi:10.3390/rs13061151.
Wang, J., et al. (2017), Article MODIS Retrieval of Aerosol Optical Depth over Turbid Coastal Water,, 9, 595, doi:10.3390/rs9060595.
Wen, G., A. Marshak, and B. Cahalan (2006), Impact of 3-D Clouds on Clear-Sky Reflectance and Aerosol Retrieval in a Biomass Burning Region of Brazil, IEEE Geosci. Remote Sens. Lett., 3, 169-172, doi:10.1109/LGRS.2005.861386.
Wen, G., A. Marshak, and B. Cahalan (2008), Importance of molecular Rayleigh scattering in the enhancement of clear sky reflectance in the vicinity of boundary layer cumulus clouds, J. Geophys. Res., 113, D24207, doi:10.1029/2008JD010592.
Wen, G., et al. (2007), 3-D aerosol-cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields, J. Geophys. Res., 112, D13204, doi:10.1029/2006JD008267.
Werner, F., et al. (2016), Marine boundary layer cloud property retrievals from high-resolution ASTER observations: case studies and comparison with Terra MODIS, Atmos. Meas. Tech., 9, 5869-5894, doi:10.5194/amt-9-5869-2016.
Werner, F., et al. (2018), Improving cloud optical property retrievals for partly cloudy pixels using coincident higher-resolution single band measurements: A feasibility study using ASTER observations, J. Geophys. Res., 123, doi:10.1029/2018JD028902.
Wind, G., et al. (2010), Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band, J. Appl. Meteor. Climat., 49, 2315-2333, doi:10.1175/2010JAMC2364.1.