Publication Citation
Lyapustin, A., et al. (2020), MAIAC Thermal Technique for Smoke Injection Height From MODIS, IEEE Geosci. Remote Sens. Lett., 17, 730-734, doi:10.1109/LGRS.2019.2936332.
Mace, J., et al. (2005), Evaluation of Cirrus Cloud Properties Derived from MODIS Data Using Cloud Properties Derived from Ground-Based Observations Collected at the ARM SGP Site, J. Appl. Meteor., 44, 221-240.
Mallet, M., et al. (2013), Absorption properties of Mediterranean aerosols obtained from multi-year ground-based remote sensing observations, Atmos. Chem. Phys., 13, 9195-9210, doi:10.5194/acp-13-9195-2013.
Marshak, A., et al. (2006), Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizes, J. Geophys. Res., 111, D09207, doi:10.1029/2005JD006686.
Marshak, A., et al. (2008), A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds, J. Geophys. Res., 113, D14S17, doi:10.1029/2007JD009196.
Marshak, A., et al. (2023), Aerosol Properties in Cloudy Environments from Remote Sensing Observations, Bull. Am. Meteorol. Soc., 102, E2177-E2197, doi:10.1175/BAMS-D-20-0225.1.
Mccoy, D. T., et al. (2018), Predicting decadal trends in cloud droplet number concentration using reanalysis and satellite data, Atmos. Chem. Phys., 18, 2035-2047, doi:10.5194/acp-18-2035-2018.
Minnis, P., et al. (2019), Advances in neural network detection and retrieval of multilayer clouds for CERES using multispectral satellite data, Proc. SPIE Remote Sens. Clouds and Atmospheric., XXIV, 1-12, doi:10.1117/12.2532931.
Minnis, P., et al. (2021), CERES MODIS Cloud Product Retrievals for Edition 4—Part I: Algorithm Changes, IEEE Trans. Geosci. Remote Sens., 59, 2744-2780, doi:10.1109/TGRS.2020.3008866.
Moody, E. G., et al. (2005), Spatially Complete Global Spectral Surface Albedos: Value-Added Datasets Derived From Terra MODIS Land Products, IEEE Trans. Geosci. Remote Sens., 43, 144-158, doi:10.1109/TGRS.2004.838359.
Moody, E. G., et al. (2007), Northern Hemisphere five-year average (2000–2004) spectral albedos of surfaces in the presence of snow: Statistics computed from Terra MODIS land products, Remote Sensing of Environment, 111, 337-345, doi:10.1016/j.rse.2007.03.026.
Moody, E. G., et al. (2008), MODIS-Derived Spatially Complete Surface Albedo Products: Spatial and Temporal Pixel Distribution and Zonal Averages, J. Appl. Meteor. Climat., 47, 2879-2894, doi:10.1175/2008JAMC1795.1.
Myhre, G., et al. (2009), Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation, Atmos. Chem. Phys., 9, 1365-1392, doi:10.5194/acp-9-1365-2009.
Noyes, K. J., et al. (2020), Wildfire Smoke Particle Properties and Evolution, from Space-Based Multi-Angle Imaging, doi:10.3390/rs12050769.
Painemal, D., et al. (2016), First extended validation of satellite microwave liquid water path with ship-based observations of marine low clouds, Geophys. Res. Lett., 43, doi:10.1002/2016GL069061.
Peterson, D., and J. Wang (2013), A Sub-pixel-based calculate of fire radiative power from MODIS observations: 2. Sensitivity analysis and potential fire weather application, Remote Sensing Environment, 129, 231-249, doi:10.1016/j.rse.2012.10.020.
Peterson, D., et al. (2013), A sub-pixel-based calculation of fire radiative power from MODIS observations: 1 Algorithm development and initial assessment, Remote Sensing of Environment, 129, 262-279, doi:10.1016/j.rse.2012.10.036.
Petrenko, M., et al. (2012), The use of satellite-measured aerosol optical depth to constrain biomass burning emissions source strength in the global model GOCART, J. Geophys. Res., 117, D18212, doi:10.1029/2012JD017870.
Petrenko, M., et al. (2017), Refined Use of Satellite Aerosol Optical Depth Snapshots to Constrain Biomass Burning Emissions in the GOCART Model, J. Geophys. Res., 122, doi:10.1002/2017JD026693.
Platnick, S., et al. (2003), The MODIS cloud products: Algorithms and examples From Terra, IEEE Trans. Geosci. Remote Sens., 41, 459-473, doi:10.1109/TGRS.2002.808301.

Pages