Recent Publications
This page lists the most recently-uploaded publications that have been added to the ESD Publications database. Select one or more Research Program(s) to filter the list.
| Publication Citation | Research Program(s) | Revision create time |
|---|---|---|
| Carn, S.A., N.A. Krotkov, B.L. Fisher, and C. Li (2022), Out of the blue: Volcanic SO2 emissions during the 2021-2022 eruptions of Hunga Tonga—Hunga Ha’apai (Tonga), Front. Earth Sci., 10, doi:10.3389/feart.2022.976962. | IDS, Atmospheric Composition, ESI | |
| Bak, J., X. Liu, K. Sun, K. Chance, and J.-H. Kim (2019), Linearization of the effect of slit function changes for improving Ozone Monitoring Instrument ozone profile retrievals, Atmos. Meas. Tech., 12, 3777-3788, doi:10.5194/amt-12-3777-2019. | Atmospheric Composition | |
| Bak, J., K.-H. Baek, J.-H. Kim, X. Liu, J. Kim, and K. Chance (2019), Cross-evaluation of GEMS tropospheric ozone retrieval performance using OMI data and the use of an ozonesonde dataset over East Asia for validation, Atmos. Meas. Tech., 12, 5201-5215, doi:10.5194/amt-12-5201-2019. | Atmospheric Composition | |
| Wang, H., A.H. Souri, G. Gonzalez Abad, X. Liu, and K. Chance (2019), Ozone Monitoring Instrument (OMI) Total Column Water Vapor version 4 validation and applications, Atmos. Meas. Tech., 12, 5183-5199, doi:10.5194/amt-12-5183-2019. | Atmospheric Composition | |
| Gordon, A.E., and C.R. Homeyer (2022), Sensitivities of Cross-Tropopause Transport in Midlatitude Overshooting Convection to the Lower Stratosphere Environment, J. Geophys. Res., 127, e2022JD036713, doi:10.1029/2022JD036713. | Atmospheric Composition, ACMAP, UARP | |
| Chattopadhyay, A., E. Assaf, Z. Finewax, and J.B. Burkholder (2022), UV absorption spectrum of monochlorodimethyl sulfide 9CH3SCH2Cl), J. Photochem. & Photobio., A: Chem., 433, 114214. | ||
| Chattopadhyay, A., Y. Bedjanian, M.N. Romanias, A.D. Eleftheriou, V.S. Melissas, V.C. Papadimitriou, and J.B. Burkholder (2022), OH Radical and Chlorine Atom Kinetics of Substituted Aromatic Compounds: 4‑chlorobenzotrifluoride (p‑ClC6H4CF3), J. Phys. Chem. A, 126, 5407-5419, doi:10.1021/acs.jpca.2c04455. | ||
| Marshall, P., and J.B. Burkholder (2022), Comment on "Extremely rapid self-reactions of hydrochlorofluoromethanes and hydrochlorofluoroehtanes and implication in destruction of ozone", Chem. Phys. Lett., 800, 139411. | ||
| Marshall, P., and J.B. Burkholder (2022), Computational study of the gas-phase reactions of sulfuric acid with OH(2PJ), O(3PJ), Cl(2PJ) and O(1D) radicals, Chem. Phys. Lett., 787, 139203. | ||
| Spectra, I., G.W. Potentials, T. Gierczak, F. Bernard, D.K. Papanastasiou, and J.B. Burkholder (2021), Atmospheric Chemistry of c‑C5HF7 and c‑C5F8: TemperatureDependent OH Reaction Rate Coefficients, Degradation Products,, J. Phys. Chem. A, 125, 1050-1061, doi:10.1021/acs.jpca.0c10561. | ||
| Papadimitriou, V.C., ab, and J.B. Burkholder (2022), rsc.li/pccp Kinetic fall-off behavior for the Cl + Furan-2,5dione (C4H2O3, maleic anhydride) reaction† Aparajeo Chattopadhyay, ab Tomasz Gierczak,‡ab Paul Marshall, abc, Pccp, doi:10.1039/To. | ||
| Marshall, P., and J.B. Burkholder (2022), Computational study of the gas-phase reactions of sulfuric acid with OH(2PJ), O(3P), and O(1D2) radicals, Chem. Phys. Lett.. | ||
| Marshall, P., and J.B. Burkholder (2022), Comment on "Extremely rapid self-reactions of hydrochlorofluoromethanes and hydrochlorofluoroethanes and implications in destruction of ozone", Chem. Phys. Lett.. | ||
| Chattopadhyay, A., J.B. Burkholder, V.C. Papadimitriou, and P. Marshall (2022), Temperature-dependent rate coefficients for the gas-phase OH + furan-2,5-dione (C4H2O3, maleic anhydride) reaction, doi:10.1002/kin.21387. | ||
| Papanastasiou, D.K., F. Bernard, and J.B. Burkholder (2022), ACCESS Metrics & More Article Recommendations * sı Supporting Information Downloaded via NOAA BOULDER LABORATORIES LBRY on September 17, 2020 at 14:49:32 (UTC)., Anal. Chem., 1626, 1626−1637, doi:10.1021/acsearthspacechem.0c00157. | ||
| Frederikse, T., F. landerer, L. caron, S. adhikari, et al. (2020), The causes of sea-level rise since 1900, Nature, doi:10.1038/s41586-020-2591-3. | ESI, CSP | |
| Hansen, K., M. Truffer, A. Aschwanden, K. Mankoff, M. Bevis, A. Humbert, M.R. van den Broeke, B. Noël, A. Bjørk, W. Colgan, K.H. Kjær, S. Adhikari, V. Barletta, and S.A. Khan (2021), Estimating Ice Discharge at Greenland's Three Largest Outlet Glaciers Using Local Bedrock Uplift, Geophys. Res. Lett., 48, e2021GL094252, doi:10.1029/2021GL094252. | ESI, CSP | |
| Beaud, F., S. Aati, I. Delaney, S. Adhikari, and J.-P. Avouac (2022), Surge dynamics of Shisper Glacier revealed by time-series correlation of optical satellite images and their utility to substantiate a generalized sliding law, The Cryosphere, 16, 3123-3148, doi:10.5194/tc-16-3123-2022. | CSP | |
| adhikari, S., and E. ivins (2016), Climate-driven polar motion: 2003–2015, Science Advances, 2, e1501693, doi:10.1126/sciadv.1501693. | ||
| Adhikari, S., G.A. Milne, L. Caron, S.A. Khan, K.K. Kjeldsen, J. Nilsson, E. Larour, and E.R. Ivins (2021), Decadal to Centennial Timescale Mantle Viscosity Inferred From Modern Crustal Uplift Rates in Greenland, Geophys. Res. Lett., 48, e2021GL094040, doi:10.1029/2021GL094040. | ESI, CSP |