This page lists the publications in the ESD Publications database, sorted by first author and year. To filter the list, select one or more Research Program(s) to filter the list, or else specify a publication year (e.g., 2011). Options to view other pages of the list are provided at the bottom of the page.

Publication Citation Research Program(s)
Wang, Q., et al. (2011), Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing, Atmos. Chem. Phys., 11, 12453-12473, doi:10.5194/acp-11-12453-2011. ACMAP, TCP
Wang, S., et al. (2010), Direct Sun measurements of NO2 column abundances from Table Mountain, California: Intercomparison of low‐ and high‐resolution spectrometers, J. Geophys. Res., 115, D13305, doi:10.1029/2009JD013503. TCP, UARP
Wang, S., et al. (2019), Ocean Biogeochemistry Control on the Marine Emissions of Brominated Very Short‐Lived Ozone‐Depleting Substances: A Machine‐Learning Approach, J. Geophys. Res., 124, doi:10.1029/2019JD031288. TCP
Wang, S., et al. (2019), Atmospheric Acetaldehyde: Importance of Air‐Sea Exchange and a Missing Source in the Remote Troposphere, Geophys. Res. Lett., 46, doi:10.1029/2019GL082034. TCP
Wang, S., et al. (2020), Global Atmospheric Budget of Acetone: Air‐Sea Exchange and the Contribution to Hydroxyl Radicals, J. Geophys. Res., 125, e2020JD032553, doi:10.1029/2020JD032553. TCP
Wang, S., et al. (2021), Chemical Tomography in a Fresh Wildland Fire Plume: A Large Eddy Simulation (LES) Study, J. Geophys. Res.. TCP
Wang, X., et al. (2018), Exploring the observational constraints on the simulation of brown carbon, Atmos. Chem. Phys., 18, 635-653, doi:10.5194/acp-18-635-2018. TCP
Wang, Y., et al. (2000), Influence of convection and biomass burning on tropospheric chemistry over the tropical Pacific, J. Geophys. Res., 105, 9321-9333. TCP
Wang, Y., et al. (2001), Factors controlling tropospheric O3, OH, NOx, and SO2 over the tropical Pacific during PEM-Tropics B, J. Geophys. Res., 106, 32733-32747. TCP
Wang, Y., et al. (2020), Inverse modeling of SO2 and NOx emissions over China using multisensor satellite data - Part 1: Formulation and sensitivity analysis, Atmos. Chem. Phys., 20, 6631-6650, doi:10.5194/acp-20-6631-2020. , ACMAP, TCP
Warneke, C., et al. (2023), Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ), J. Geophys. Res., 128, e2022JD037758, doi:10.1029/2022JD037758. TCP
Warner, J., et al. (2013), Tropospheric carbon monoxide variability from AIRS under clear and cloudy conditions, Atmos. Chem. Phys., 13, 12469-12479, doi:10.5194/acp-13-12469-2013. ACMAP, TCP
Warner, J., et al. (2014), Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites, Atmos. Chem. Phys., 14, 103-114, doi:10.5194/acp-14-103-2014. ACMAP, TCP
Warner, J., et al. (2016), The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record, Atmos. Chem. Phys., 16, 5467-5479, doi:10.5194/acp-16-5467-2016. ACMAP, TCP
Warner, J., et al. (2017), Increased atmospheric ammonia over the world’s major agricultural areas detected from space, Geophys. Res. Lett., 44, doi:10.1002/2016GL072305. ACMAP, TCP
Washenfelder, R. A., et al. (2015), Biomass burning dominates brown carbon absorption in the rural southeastern United States, Geophys. Res. Lett., 42, 653-664, doi:0.1002/2014GL062444. TCP
Watson-Parris, D., et al. (2019), In situ constraints on the vertical distribution of global aerosol, Atmos. Chem. Phys., 19, 11765-11790, doi:10.5194/acp-19-11765-2019. TCP
Wespes, C., et al. (2012), Analysis of ozone and nitric acid in spring and summer Arctic pollution using aircraft, ground-based, satellite observations and MOZART-4 model: source attribution and partitioning, Atmos. Chem. Phys., 12, 237-259, doi:10.5194/acp-12-237-2012. TCP
White, E., et al. (2023), Accounting for Non-Detects: Application to Satellite Ammonia Observations, Application to Satellite Ammonia Observations. Remote Sens., 15, 2610, doi:10.3390/rs15102610. , TCP
Wiggins, E. B., et al. (2021), Reconciling assumptions in bottom-up and top-down approaches for estimating aerosol emission rates from wildland fires using observations from FIREX-AQ, J. Geophys. Res., 126, e2021JD035692, doi:10.1029/2021JD035692. TCP

Pages

CSV