This page lists the publications in the ESD Publications database, sorted by first author and year. To filter the list, select one or more Research Program(s) to filter the list, or else specify a publication year (e.g., 2011). Options to view other pages of the list are provided at the bottom of the page.

Publication Citation Research Program(s)
Thomas, B. C., C. H. Jackman, and A. L. Melott (2007), Modeling atmospheric effects of the September 1859 solar flare, Geophys. Res. Lett., 34, L06810, doi:10.1029/2006GL029174. ACMAP
Thomas, B. C., et al. (2005), Gamma-Ray Bursts and the Earth: Exploration of Atmospheric, Biological, Climatic, and Biogeochemical Effects, The Astrophysical Journal, 634, 509-533. ACMAP
Thomas, B. C., et al. (2005), Terrestrial Ozone Depletion due to a Milky Way Gamma-Ray Burst, The Astrophysical Journal, 622, L153-L156. ACMAP
Thomason, L. W. (2012), Toward a combined SAGE II-HALOE aerosol climatology: an evaluation of HALOE version 19 stratospheric aerosol extinction coefficient observations, Atmos. Chem. Phys., 12, 8177-8188, doi:10.5194/acp-12-8177-2012. ACMAP
Thomason, L. W., and J. Jean-Paul (2013), Improved SAGE II cloud/aerosol categorization and observations of the Asian tropopause aerosol layer: 1989–2005, Atmos. Chem. Phys., 13, 4605-4616, doi:10.5194/acp-13-4605-2013. ACMAP
Thomason, L. W., et al. (2008), SAGE II measurements of stratospheric aerosol properties at non-volcanic levels, Atmos. Chem. Phys., 8, 983-995, doi:10.5194/acp-8-983-2008. ACMAP
Thomason, L. W., et al. (2010), An evaluation of the SAGE III version 4 aerosol extinction coefficient and water vapor data products, Atmos. Chem. Phys., 10, 2159-2173, doi:10.5194/acp-10-2159-2010. ACMAP
Tian, B., B. Soden, and X. Wu (2004), Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model, J. Geophys. Res., 109, D10101, doi:10.1029/2003JD004117. MAP, ACMAP, , ADP
Tian, B., et al. (2008), Does the Madden-Julian Oscillation influence aerosol variability?, J. Geophys. Res., 113, D12215, doi:10.1029/2007JD009372. ACMAP, ADP, RSP
Tian, B., et al. (2011), Modulation of Atlantic aerosols by the Madden‐Julian Oscillation, J. Geophys. Res., 116, D15108, doi:10.1029/2010JD015201. MAP, ACMAP, RSP,
Tian, H., et al. (2020), A comprehensive quantification of global nitrous oxide sources and sinks, Nature, 586, 248-256, doi:10.1038/s41586-020-2780-0. , ACMAP, TCP, CCEP
Toon, B., et al. (2010), Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J04, doi:10.1029/2009JD013073. ACMAP, RSP, TCP, UARP
Torres, B., et al. (2017), Advanced characterisation of aerosol size properties from measurements of spectral optical depth using the GRASP algorithm, Atmos. Meas. Tech., 10, 3743-3781, doi:10.5194/amt-10-3743-2017. , ACMAP, RSP
Torres, O., C. Ahn, and Z. Chen (2013), Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations, Atmos. Meas. Tech., 6, 3257-3270, doi:10.5194/amt-6-3257-2013. , ACMAP
Torres, O., et al. (2010), OMI and MODIS observations of the anomalous 2008–2009 Southern Hemisphere biomass burning seasons, Atmos. Chem. Phys., 10, 3505-3513, doi:10.5194/acp-10-3505-2010. , ACMAP
Torres, O., H. Jethva, and P. Bhartia (2012), Retrieval of Aerosol Optical Depth above Clouds from OMI Observations: Sensitivity Analysis and Case Studies, J. Atmos. Sci., 69, 1037-1053, doi:10.1175/JAS-D-11-0130.1. , ACMAP
Toth, T., et al. (2018), Minimum aerosol layer detection sensitivities and their subsequent impacts on aerosol optical thickness retrievals in CALIPSO level 2 data products, Atmos. Meas. Tech., 11, 499-514, doi:10.5194/amt-11-499-2018. ACMAP
Toth, T., et al. (2019), A bulk-mass-modeling-based method for retrieving particulate matter pollution using CALIOP observations, Atmos. Meas. Tech., 12, 1739-1754, doi:10.5194/amt-12-1739-2019. ACMAP
Travis, K., and D. J. Jacob (2019), Systematic bias in evaluating chemical transport models with maximum daily 8 h average (MDA8) surface ozone for air quality applications: a case study with GEOS-Chem v9.02, Geosci. Model. Dev., 12, 3641-3648, doi:10.5194/gmd-12-3641-2019. ACMAP
Turquety, S., et al. (2007), Inventory of boreal fire emissions for North America in 2004: Importance of peat burning and pyroconvective injection, J. Geophys. Res., 112, D12S03, doi:10.1029/2006JD007281. ACMAP, TCP

Pages

CSV