This site requires that JavaScripts be enabled in your browser. For instructions,
click here
Skip to main content
NASA - National Aeronautics and Space Administration
View Publications
By Program
By Mission
Recent
Statistics
›
Log in to ESD Publications
|
›
Create New Account
Log in to ESD Publications
Username
*
Password
*
Create new account
Request new password
Search form
Search
Leave this field blank
ESD Publications
View Publications
By Program
By Mission
Recent
Statistics
ESD Publications
Home
>
View Publications
>
Pubs by Mission
> Publications for ORACLES
Publication Citation
Pistone, K.
,
et al.
(2021),
Exploring the elevated water vapor signal associated with the free-tropospheric biomass burning plume over the southeast Atlantic Ocean
,
Atmos. Chem. Phys.
, doi:10.5194/acp-2020-1322
(submitted)
.
Redemann, J.
,
et al.
(2020),
An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin
,
Atmos. Chem. Phys. Discuss., 2020
, in review, doi:10.5194/acp-2020-449.
Ryoo, J.-M.,
et al.
(2021),
A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeast Atlantic during 2016-2018
,
Atmos. Chem. Phys.
, doi:10.5194/acp-2021-274.
Ryoo, J.
,
et al.
(2021),
A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 1 – Climatology
,
Atmos. Chem. Phys., 21
, 16689-16707, doi:10.5194/acp-21-16689-2021.
Ryoo, J.
,
et al.
(2023),
A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 2 – Daily and synoptic characteristics
,
Atmos. Chem. Phys.
, doi:10.5194/acp-22-14209-2022.
Sayer, A. M.
,
et al.
(2019),
Two decades observing smoke above clouds in the south-eastern Atlantic Ocean: Deep Blue algorithm updates and validation with ORACLES field campaign data
,
Atmos. Meas. Tech., 12
, 3595-3627, doi:10.5194/amt-12-3595-2019.
Sedlacek, A. J.
,
et al.
(2021),
Black Carbon Particle Mixing State Analysis Allows Classification of Biomass Burn Aerosol Lifecycle into Three Aging Regimes
,
Proc. Natl. Acad. Sci.
, 2021-12527.
Segal-Rozenhaimer, M.
,
et al.
(2018),
Development of neural network retrievals of liquid cloud properties from multi-angle polarimetric observations
,
J. Quant. Spectrosc. Radiat. Transfer, 220
, 39-51, doi:10.1016/j.jqsrt.2018.08.030.
shinozuka,
et al.
(2019),
Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016
,
Atmos. Chem. Phys. Discuss.
, doi: https://doi.org/10.5194/acp-2019-678
(submitted)
.
Shinozuka, Y.,
et al.
(2020),
Daytime aerosol optical depth above low-level clouds is similar to that in adjacent clear skies at the same heights: airborne observation above the southeast Atlantic
,
Atmos. Chem. Phys.
, doi:10.5194/acp-2019-1007
(submitted)
.
Siméon, A.,
et al.
(2021),
Combining POLDER-3 satellite observations and WRF-Chem numerical simulations to derive biomass burning aerosol properties over the Southeast Atlantic region
,
Atmos. Chem. Phys. Discuss.
, doi:10.5194/acp-2021-256.
Sinclair, K.
,
et al.
(2021),
Inference of Precipitation in Warm Stratiform Clouds Using Remotely Sensed Observations of the Cloud Top Droplet Size Distribution
,
Geophys. Res. Lett.
.
Star, T.,
et al.
(2018),
4STAR_codes: 4STAR processing codes
,
Zenodo
, doi:10.5281/zenodo.1492912.
Xu, F.
,
et al.
(2018),
Coupled Retrieval of Liquid Water Cloud and Above-Cloud Aerosol Properties Using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI)
,
J. Geophys. Res., 123
, 3175-3204, doi:10.1002/2017JD027926.
Xu, F.
,
et al.
(2021),
A Combined Lidar-Polarimeter Inversion Approach for Aerosol Remote Sensing Over Ocean
,
Front. Remote Sens., 2
, 1-24, doi:10.3389/frsen.2021.620871.
Zhang, J.
, and
Brian Mapes
(2019),
The diurnal cycle of the smoky marine boundary layer observed during August in the remote southeast Atlantic
,
Atmos. Chem. Phys., 19
, 14493-14516, doi:10.5194/acp-19-14493-2019.
Zhang, J.
, and
Brian Mapes
(2021),
Sunlight-absorbing aerosol amplifies the seasonal cycle in low cloud fraction over the southeast Atlantic
,
Atmos. Chem. Phys.
, doi:10.5194/acp-2021-275.
Zhou, X.,
et al.
(2017),
Impacts of solar-absorbing aerosol layers on the transition of stratocumulus to trade cumulus clouds
,
Atmos. Chem. Phys., 17
, 12725-12742, doi:10.5194/acp-17-12725-2017.
Brian Mapes
,
et al.
(2016),
Interactions: Smoke and Clouds above the Southeast Atlantic Upcoming Field Campaigns Probe Absorbing Aerosol’s Impact on Climate
,
Bull. Am. Meteorol. Soc.
, 19-23, doi:10.1175/BAMS-D-15-00082.1.
Pages
« first
‹ previous
1
2
3