Publication Citation
Abel, S., et al. (2019), Open cells can decrease the mixing of free-tropospheric biomass burning aerosol into the south-east Atlantic boundary layer, Atmos. Chem. Phys., doi:10.5194/acp-2019-738 (submitted).
Adebiyi, A., and P. Zuidema (2018), Low Cloud Cover Sensitivity to Biomass-Burning Aerosols and Meteorology over the Southeast Atlantic, J. Climate, 31, 4329-4346, doi:10.1175/JCLI-D-17-0406.1.
Adebiyi, A., et al. (2020), Mid-level clouds are frequent above the southeast Atlantic stratocumulus clouds, Atmos. Chem. Phys., 1-28, doi:10.5194/acp-2020-324.
Burton, S., et al. (2018), Calibration of a high spectral resolution lidar using a Michelson interferometer, with data examples from ORACLES, Appl. Opt., 57, 6061-6075, doi:10.1364/AO.57.006061.
Carter, T. S., et al. (2021), Investigating Carbonaceous Aerosol and its Absorption Properties from Fires in the western US (WE CAN) and southern Africa (ORACLES and CLARIFY), J. Geophys. Res., 126, e2021JD034984, doi:10.1029/2021JD034984.
Chang, I., et al. (2020), Spatiotemporal heterogeneity of aerosol and cloud properties over the southeast Atlantic: An observational analysis, in review for, Geophys. Res. Lett..
Che, H., et al. (2020), The significant role of biomass burning aerosols in clouds and radiation in the South-eastern Atlantic Ocean, Atmos. Chem. Phys., doi:10.5194/acp-2020-532.
Che, H., et al. (2021), Cloud adjustments dominate the overall negative aerosol radiative effects of biomass burning aerosols in UKESM1 climate model simulations over the south-eastern Atlantic, Atmos. Chem. Phys., 21, 17-33, doi:10.5194/acp-21-17-2021.
Cochrane, S. P., et al. (2021), Biomass Burning Aerosol Heating Rates from the ORACLES, Atmos. Meas. Tech., and 2017 Experiments, doi:10.5194/acp-2021-169.
Cochrane, S., et al. (2019), Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments, Atmos. Meas. Tech., 12, 6505-6528, doi:10.5194/amt-12-6505-2019.
Cochrane, S., et al. (2020), The Dependence of Aerosol Radiative Effects on Spectral Aerosol Properties Derived from Aircraft Measurements: Results from the ORACLES 2016 and ORACLES 2017 Experiments, Atmos. Chem. Phys. (manuscript in preparation).
Das, S., N. Harshvardhan, and P. R. Colarco (2020), The influence of elevated smoke layers on stratocumulus clouds over the SE Atlantic in the NASA Goddard Earth Observing System (GEOS) model, J. Geophys. Res., 125, 1-20, doi:https://doi.org/10.1029/2019JD031209.
Diamond, M., et al. (2018), Time-dependent entrainment of smoke presents an observational challenge for assessing aerosol–cloud interactions over the southeast Atlantic Ocean, Atmos. Chem. Phys., 18, 14623-14636, doi:10.5194/acp-18-14623-2018.
Diamond, M., et al. (2020), Substantial Cloud Brightening From Shipping in Subtropical Low Clouds, AGU Advances, 1, 1-28, doi:10.1029/2019AV000111.
Diamond, M., et al. (2023), Cloud adjustments from large-scale smoke–circulation interactions strongly modulate the southeastern Atlantic stratocumulus-to-cumulus transition, Atmos. Chem. Phys., doi:10.5194/acp-22-12113-2022.
Ding, K., et al. (2020), Asian monsoon amplifies semi-direct effect of biomass burning aerosols on low cloud formation, EarthArXiv Preprint Ding et al..
Dobracki, A., et al. (2021), submitted (June, Comm. Earth Env., Non-reversible aging, manuscript #COMMSENV-21-0385-T, doi:10.1002/essoar.10507561.1.
Doherty, S., et al. (2021), Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the Southeast Atlantic, Atmos. Chem. Phys., doi:10.5194/acp-2021-333.
Dzambo, A., et al. (2019), The Observed Structure and Precipitation Characteristics of Southeast Atlantic Stratocumulus from Airborne Radar during ORACLES 2016-17, J. Appl. Meteor. Climat., 58, 2197-2215, doi:https://doi.org/10.1175/JAMC-D-19-0032.1.
Dzambo, A., et al. (2020), Joint Cloud Water Path and Rain Water Path Retrievals from ORACLES Observations, Atmos. Chem. Phys., doi:10.5194/acp-2020-849.

Pages