The following papers are associated with the ORACLES mission.

Publication Citation
Adebiyi, A., and P. Zuidema (2016), The role of the southern African easterly jet in modifying the southeast Atlantic aerosol and cloud environments, Q. J. R. Meteorol. Soc., 142, 1574-1589, doi:10.1002/qj.2765.
Adebiyi, A., P. Zuidema, and S. Abel (2015), The Convolution of Dynamics and Moisture with the Presence of Shortwave Absorbing Aerosols over the Southeast Atlantic, J. Climate, 28, 1997-2024, doi:10.1175/JCLI-D-14-00352.1.
Chand, D., et al. (2008), Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing, J. Geophys. Res., 113, D13206, doi:10.1029/2007JD009433.
Chand, D., et al. (2009), Satellite-derived direct radiative effect of aerosols dependent on cloud cover, Nature Geoscience, 1-4, doi:10.1038/NGEO437.
de Graaf, M., et al. (2014), Aerosol direct radiative effect of smoke over clouds over the southeast Atlantic Ocean from 2006 to 2009, Geophys. Res. Lett., 41, 7723-7730, doi:10.1002/2014GL061103.
Feng, N., and S. Christopher (2015), Measurement-based estimates of direct radiative effects of absorbing aerosols above clouds, J. Geophys. Res., 120, 6908-6921, doi:10.1002/2015JD023252.
Jethva, H., et al. (2014), How do A-train sensors intercompare in the retrieval of above-cloud aerosol optical depth? A case study-based assessment, Geophys. Res. Lett., 41, 186-192, doi:10.1002/2013GL058405.
Kacenelenbogen, M. S., et al. (2014), An evaluation of CALIOP/CALIPSO’s aerosol-above-cloud (AAC) detection and retrieval capability. , J. Geophys. Res., 119, 230-244.
Meyer, K., S. Platnick, and Z. Zhang (2015), Simultaneously inferring above-cloud absorbing aerosol optical thickness and underlying liquid phase cloud optical and microphysical properties using MODIS, J. Geophys. Res., 120, 5524-5547, doi:10.1002/2015JD023128.
Peers, F., et al. (2015), Absorption of aerosols above clouds from POLDER/PARASOL measurements and estimation of their direct radiative effect, Atmos. Chem. Phys., 15, 4179-4196, doi:10.5194/acp-15-4179-2015.
Peers, F., et al. (2016), Comparison of aerosol optical properties above clouds between POLDER and AeroCom models over the South East Atlantic Ocean during the fire season, Geophys. Res. Lett., 43, 3991-4000, doi:10.1002/2016GL068222.
Sakaeda, N., R. Wood, and P. J. Rasch (2011), Direct and semidirect aerosol effects of southern African biomass burning aerosol, J. Geophys. Res., 116, D12205, doi:10.1029/2010JD015540.
Sayer, A. M., et al. (2016), Extending “Deep Blue” aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies, J. Geophys. Res., 121, Atmos., doi:10.1002/2015JD024729.
Seethala, C., J. R. Norris, and T. A. Myers (2015), How Has Subtropical Stratocumulus and Associated Meteorology Changed since the 1980s?*, J. Climate, 28, 8396-8410, doi:10.1175/JCLI-D-15-0120.1.
Waquet, F., et al. (2013), Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarization measurements, Atmos. Meas. Tech., 6, 991-1016, doi:10.5194/amt-6-991-2013.
Yamaguchi, T., et al. (2015), Stratocumulus to cumulus transition in the presence of elevated smoke layers, Geophys. Res. Lett., 42, 10,478-10,485, doi:10.1002/2015GL066544.
Zuidema, P., et al. (2016), Interactions: Smoke and Clouds above the Southeast Atlantic Upcoming Field Campaigns Probe Absorbing Aerosol’s Impact on Climate, Bull. Am. Meteorol. Soc., 19-23, doi:10.1175/BAMS-D-15-00082.1.