Publication Citation
Saide Peralta, et al. (2022), Understanding the Evolution of Smoke Mass Extinction Efficiency Using Field Campaign Measurements, Geophys. Res. Lett., 49, e2022GL099175, doi:10.1029/2022GL099175.
Saide Peralta, et al. (2023), Understanding the Evolution of Smoke Mass Extinction Efficiency Using Field Campaign Measurements, Geophys. Res. Lett., 49, e2022GL099175, doi:10.1029/2022GL099175.
Stockwell, C. E., et al. (2022), Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires, Environ. Sci. Technol., 56, 7564-7577, doi:10.1021/acs.est.1c07121.
Tang, W., et al. (2022), Effects of Fire Diurnal Variation and Plume Rise on U.S. Air Quality During FIREX-AQ and WE-CAN Based on the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0), J. Geophys. Res., 127, e2022JD036650, doi:10.1029/2022JD036650.
Tang, Y., et al. (2023), Evaluation of the NAQFC driven by the NOAA Global Forecast System (version 16): comparison with the WRF-CMAQ during the summer 2019 FIREX-AQ campaign, Geosci. Model. Dev., doi:10.5194/gmd-15-7977-2022.
Thapa, L., et al. (2023), Heat flux assumptions contribute to overestimation of wildfire smoke injection into the free troposphere, Nature, doi:10.1038/s43247-022-00563-x.
Tomsche, L., et al. (2023), Measurement report: Emission factors of NH3 and NHx for wildfires and agricultural fires in the United States, Atmos. Chem. Phys., doi:10.5194/acp-23-2331-2023.
Wang, S., et al. (2021), Chemical Tomography in a Fresh Wildland Fire Plume: A Large Eddy Simulation (LES) Study, J. Geophys. Res..
Warneke, C., et al. (2023), Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ), J. Geophys. Res., 128, e2022JD037758, doi:10.1029/2022JD037758.
Wiggins, E. B., et al. (2021), Reconciling assumptions in bottom-up and top-down approaches for estimating aerosol emission rates from wildland fires using observations from FIREX-AQ, J. Geophys. Res., 126, e2021JD035692, doi:10.1029/2021JD035692.
Xu, L., et al. (2022), Ozone chemistry in western U.S. wildfire plumes, Science Advances, 7, eabl3648, doi:10.1126/sciadv.abl3648.
Xu, L., et al. (2022), Adv.7, eabl3648 (2021) 8 December 2021SCIENCE ADVANCES, Ozone chemistry in western U.S. wildfire plumes, Xu et al., Sci., 7, eabl3648, doi:10.1126/sciadv.abl3648.
Ye, X., et al. (2020), Assessment of Satellite AOD during the 2020 Wildfire Season in the Western U.S., Wildfire Season in the Western U.S.. Remote Sens., 2022, 6113, doi:10.3390/rs14236113.
Ye, X., et al. (2021), Evaluation and intercomparison of wildfire smoke forecasts from multiple modeling systems for the 2019 Williams Flats fire, Atmos. Chem. Phys., 21, 14427-14469, doi:10.5194/acp-21-14427-2021.
Ye, X., et al. (2021), Evaluation and intercomparison of wildfire smoke forecasts from multiple modeling systems for the 2019 Williams Flats fire, Atmos. Chem. Phys., doi:10.5194/acp-2021-223.
Ye, X., et al. (2023), Assessing Vertical Allocation of Wildfire Smoke Emissions Using Observational Constraints From Airborne Lidar in the Western U.S., J. Geophys. Res..
Zhou, D. K., et al. (2022), Estimation of fire-induced CO plume age from NAST–I during the FIREX-AQ field campaign, Journal of Applied Remote Sensing 034522-1, doi:10.1117/1.JRS.16.034522.

Pages