Publication Citation
Ganeshan, M., and Y. Yang (2019), Evaluation of the Antarctic boundary layer thermodynamic structure in MERRA2 using dropsonde observations from the Concordiasi campaign, Earth and Space Science, 6, doi:10.1029/2019EA000890.
Griessbach, S., et al. (2020), J.-P. (2020). Aerosol and cloud top height information of Envisat MIPAS measurements, Atmos. Meas. Tech., 13, 1243-1271, doi:10.5194/amt-13-1243-2020.
Hagihara, Y., H. Okamoto, and Z. J. Luo (2014), Joint analysis of cloud top heights from CloudSat and CALIPSO: New insights into cloud top microphysics, J. Geophys. Res., 119, doi:10.1002/2013JD020919.
Heymsfield, A., et al. (2011), Formation and Spread of Aircraft-Induced Holes in Clouds, Science, 333, 77-81, doi:10.1126/science.1202851.
Hinkelman, L. (2019), The Global Radiative Energy Budget in MERRA and MERRA-2: Evaluation with Respect to CERES EBAF Data, J. Climate, 32, 1973-1994, doi:10.1175/JCLI-D-18-0445.1.
Hu, Y., et al. (2007), Global statistics of liquid water content and effective number concentration of water clouds over ocean derived from combined CALIPSO and MODIS measurements, Atmos. Chem. Phys., 7, 3353-3359, doi:10.5194/acp-7-3353-2007.
Hu, Y., et al. (2008), Sea surface wind speed estimation from space-based lidar measurements, Atmos. Chem. Phys., 8, 3593-3601, doi:10.5194/acp-8-3593-2008.
Hu, Y., et al. (2009), CALIPSO/CALIOP Cloud Phase Discrimination Algorithm, J. Atmos. Oceanic Technol., 26, 2293-2309, doi:10.1175/2009JTECHA1280.1.
Hu, Z., et al. (2016), Trans-Pacific transport and evolution of aerosols: evaluation of quasi-global WRF-Chem simulation with multiple observations, Geosci. Model Dev., 9, 1725-1746, doi:10.5194/gmd-9-1725-2016.
Huang, J., et al. (2007), Summer dust aerosols detected from CALIPSO over the Tibetan Plateau, Geophys. Res. Lett., 34, L18805, doi:10.1029/2007GL029938.
Huang, J., et al. (2015), CALIPSO inferred most probable heights of global dust and smoke layers, J. Geophys. Res., 120, doi:10.1002/2014JD022898.
Jiang, J., et al. (2012), Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations, J. Geophys. Res., 117, D14105, doi:10.1029/2011JD017237.
Kacenelenbogen, M. S., et al. (2014), An evaluation of CALIOP/CALIPSO’s aerosol-above-cloud (AAC) detection and retrieval capability. , J. Geophys. Res., 119, 230-244.
Kahn, R. (2020), A global perspective on wildfires. EOS, American Geophysical Union, EOS - American Geophysical Union, 101, 1-5, doi:10.1029/2020EO138260.
Kahn, R. (2020), A global perspective on wildfires. EOS, American Geophysical Union, EOS - American Geophysical Union, 101, 1-5, doi:10.1029/2020EO138260.
Kahn, R., and B. H. Samset (2022), Remote sensing measurements of aerosol properties, K. Carslaw, Ed., Elsevier, ISBN, 9780128197660, Chapter 10 in.
Kim, D., et al. (2017), Role of surface wind and vegetation cover in multi-decadal variations of dust emission in the Sahara and Sahel, Atmos. Environ., 148, 282-296, doi:10.1016/j.atmosenv.2016.10.051.
Kim, D., et al. (2019), Asian and Trans‐Pacific Dust: A Multimodel and Multiremote Sensing Observation Analysis, J. Geophys. Res..
Lambert, A., et al. (2012), A-train CALIOP and MLS observations of early winter Antarctic polar stratospheric clouds and nitric acid in 2008, Atmos. Chem. Phys., 12, 2899-2931, doi:10.5194/acp-12-2899-2012.
Lambert, A., M. Santee, and N. Livesey (2016), Interannual variations of early winter Antarctic polar stratospheric cloud formation and nitric acid observed by CALIOP and MLS, Atmos. Chem. Phys., 16, 15219-15246, doi:10.5194/acp-16-15219-2016.

Pages