Publication Citation
(2020), Estimates of Regional Source Contributions to the Asian Tropopause Aerosol Layer Using a Chemical Transport Model, J. Geophys. Res., 125, doi:10.1029/2019JD031506.
Adhikari, L., Z. Wang, and D. Liu (2010), Microphysical properties of Antarctic polar stratospheric clouds and their dependence on tropospheric cloud systems, J. Geophys. Res., 115, D00H18, doi:10.1029/2009JD012125.
Adhikari, L., Z. Wang, and M. Deng (2012), Seasonal variations of Antarctic clouds observed by CloudSat and CALIPSO satellites, J. Geophys. Res., 117, D04202, doi:10.1029/2011JD016719.
Bardeen, C., et al. (2013), Improved cirrus simulations in a general circulation model using CARMA sectional microphysics., O. Toon.. Improved cirrus simulations in a general circulation model using CARMA sectional microphysics. J. Geophys, Res.: Atmospheres, 118 (20), 118, 11,679-11,697, doi:10.1002/2013JD020193.
Buchard-Marchant, V. J., et al. (2017), The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies, J. Climate, 30, 6851-6872, doi:10.1175/JCLI-D-16-0613.1.
Campbell, J., et al. (2010), CALIOP Aerosol Subset Processing for Global Aerosol Transport Model Data Assimilation, Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing, 3, 203-214, doi:10.1109/JSTARS.2010.2044868.
Cesana, G., et al. (2019), Evaluating models’ response of tropical low clouds to SST forcings using CALIPSO observations, Atmos. Chem. Phys., 19, 2813-2832, doi:10.5194/acp-19-2813-2019.
Cho, H.-M., et al. (2008), Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements, Opt. Express, 16, 3931-3948.
Del Genio, A. (2012), Representing the Sensitivity of Convective Cloud Systems to Tropospheric Humidity in General Circulation Models, Surv. Geophys., 33, 637-656, doi:10.1007/s10712-011-9148-9.
Del Genio, A., and Y. Chen (2015), Cloud-radiative driving of the Madden-Julian oscillation as seen by the A-Train, J. Geophys. Res., 120, 5344-5356, doi:10.1002/2015JD023278.
Del Genio, A., et al. (2012), The MJO Transition from Shallow to Deep Convection in CloudSat/CALIPSO Data and GISS GCM Simulations, J. Climate, 25, 3755-3770, doi:10.1175/JCLI-D-11-00384.1.
Delanöe, J., et al. (2011), Evaluation of ice cloud representation in the ECMWF and UK Met Office models using CloudSat and CALIPSO data, Q. J. R. Meteorol. Soc., 137, 2064-2078, doi:10.1175/JCLI-D-11-00384.1.
Deng, M., J. Mace, and Z. Wang (2016), Anvil Productivities of Tropical Deep Convective Clusters and Their Regional Differences, J. Atmos. Sci., 73, 3467-3487, doi:10.1175/JAS-D-15-0239.1.
Dessler, A. (2009), Clouds and water vapor in the Northern Hemisphere summertime stratosphere, J. Geophys. Res., 114, D00H09, doi:10.1029/2009JD012075.
Fadnavis, S., et al. (2019), Elevated aerosol layer over South Asia worsens the Indian droughts, Scientific Reports, 9, doi:10.1038/s41598-019-46704-9.
Fadnavis, S., et al. (2019), Elevated aerosol layer over South Asia worsens the Indian droughts, Scientific Reports, 9, doi:10.1038/s41598-019-46704-9.
Feng, Y., et al. (2022), Global Dust Cycle and Direct Radiative Effect in E3SM Version 1: Impact of Increasing Model Resolution, J. Adv. Modeling Earth Syst..
Fromm, M., et al. (2021), Quantifying the Source Term and Uniqueness of the August 12, 2017 Pacific Northwest PyroCb Event, J. Geophys. Res..
Fromm, M., et al. (2022), Quantifying the Source Term and Uniqueness of the August 12, 2017 Pacific Northwest PyroCb Event, J. Geophys. Res..
Ganeshan, M., and Y. Yang (2018), A Regional Analysis of Factors Affecting the Antarctic Boundary Layer During the Concordiasi Campaign, J. Geophys. Res., 123, doi:10.1029/2018JD028629.

Pages