Surendra Adhikari
Organization:
Jet Propulsion Laboratory
Email:
First Author Publications:
- Adhikari, S., et al. (2021), Decadal to Centennial Timescale Mantle Viscosity Inferred From Modern Crustal Uplift Rates in Greenland, Geophys. Res. Lett., 48, e2021GL094040, doi:10.1029/2021GL094040.
- Adhikari, S., et al. (2020), A kinematic formalism for tracking ice–ocean mass exchange on the Earth’s surface and estimating sea-level change, The Cryosphere, 14, 2819-2833, doi:10.5194/tc-14-2819-2020.
- Adhikari, S., et al. (2019), Sea-level fingerprints emergent from GRACE mission data, Earth Syst. Sci. Data, 11, 629-646, doi:10.5194/essd-11-629-2019.
- Adhikari, S., et al. (2018), What drives 20th century polar motion?, Earth Planet. Sci. Lett., 502, 126-132, doi:10.1016/j.epsl.2018.08.059.
- Adhikari, S., E. Ivins, and E. Larour (2017), Mass transport waves amplified by intense Greenland melt and detected in solid Earth deformation, Geophys. Res. Lett., 44, doi:10.1002/2017GL073478.
- Adhikari, S., E. Ivins, and E. Larour (2016), ISSM-SESAW v1.0: mesh-based computation of gravitationally consistent sea-level and geodetic signatures caused by cryosphere and climate driven mass change, Geosci. Model. Dev., 9, 1087-1109, doi:10.5194/gmd-9-1087-2016.
- Adhikari, S., and E. Ivins (2016), Climate-driven polar motion: 2003–2015, Science Advances, 2, e1501693, doi:10.1126/sciadv.1501693.
Co-Authored Publications:
- Shahvandi, M. K., et al. (2024), Contributions of core, mantle, and climatological processes to Earth’s polar motion, Nature Geoscience, pp-pp, in press.
- Shahvandia, M., et al. (2024), The increasingly dominant role of climate change on length of day variations, Proc. Natl. Acad. Sci., in press, in press.
- Ivins, E., L. Caron, and S. Adhikari (2023), Anthropocene isostatic adjustment on an anelastic mantle, Journal of Geodesy, 97, 92, doi:10.1007/s00190-023-01781-7.
- Beaud, F., et al. (2022), Surge dynamics of Shisper Glacier revealed by time-series correlation of optical satellite images and their utility to substantiate a generalized sliding law, The Cryosphere, 16, 3123-3148, doi:10.5194/tc-16-3123-2022.
- Ivins, E., et al. (2022), Notes on a compressible extended Burgers model of rheology, Geophys. J. Int., 228, 1975-1991, doi:10.1093/gji/ggab452.
- Hansen, K., et al. (2021), Estimating Ice Discharge at Greenland's Three Largest Outlet Glaciers Using Local Bedrock Uplift, Geophys. Res. Lett., 48, e2021GL094252, doi:10.1029/2021GL094252.
- Frederikse, T., et al. (2020), The causes of sea-level rise since 1900, Nature, doi:10.1038/s41586-020-2591-3.
- Hamlington, B. D., et al. (2020), Understanding of Contemporary Regional Sea‐Level Change and the Implications for the Future, Rev. Geophys., 58, e2019RG000672, doi:10.1029/2019RG000672.
- Larour, E., et al. (2020), ISSM-SLPS: geodetically compliant Sea-Level Projection System for the Ice-sheet and Sea-level System Model v4.17, Geosci. Model. Dev., 13, 4925-4941, doi:10.5194/gmd-13-4925-2020.
- Larour, E., et al. (2019), Slowdown in Antarctic mass loss from solid Earth and sea-level feedbacks, Science, doi:10.1126/science.aav7908.
- Caron, L., et al. (2018), GIA Model Statistics for GRACE Hydrology, Cryosphere, and Ocean Science, Geophys. Res. Lett., 45, e1700537, doi:10.1002/2017GL076644.