SG Publications

This page lists the publications in the ESD Publications database, sorted by first author and year. To filter the list, select one or more Research Program(s) to filter the list, or else specify a publication year (e.g., 2011). Options to view other pages of the list are provided at the bottom of the page.

Searches the publication title
Publication Citation
Yu, F., G. Luo, A.A. Nair, S. Eastham, C.J. Williamson, A. Kupc, and C.A. Brock (2022), Particle number concentrations and size distributions in the stratosphere: Implications of nucleation mechanisms and particle microphysics, Atmos. Chem. Phys., doi:10.5194/acp-2022-487.
Yue, J., S.D. Miller, W.C. Straka, Y.-J. Noh, M.-Y. Chou, R. Kahn, and V. Flower (2022), La Soufriere Volcanic Eruptions Launched Gravity Waves Into Space, Geophys. Res. Lett..
Zamora, L.M., R.A. Kahn, N. Evangeliou, C.D.G. Zwaaftink, and K.B. Huebert (2022), Comparisons between the distributions of dust and combustion aerosols in MERRA-2, FLEXPART, and CALIPSO and implications for deposition freezing over wintertime Siberia, Atmos. Chem. Phys., doi:10.5194/acp-22-12269-2022.
Zeng, L., J. Dibb, E. Scheuer, J.M. Katich, J.P. Schwarz, I. Bourgeois, J. Peischl, T. Ryerson, C. Warneke, A.E. Perring, G.S. Diskin, J.P. DiGangi, J.B. Nowak, R.H. Moore, E.B. Wiggins, D. Pagonis, H. Guo, P. Campuzano-Jost, J.L. Jimenez, L. Xu, and R.J. Weber (2022), Characteristics and evolution of brown carbon in western United States wildfires, Atmos. Chem. Phys., doi:10.5194/acp-22-8009-2022.
Zeng, L., J. Dibb, E. Scheuer, J.M. Katich, J.P. Schwarz, I. Bourgeois, J. Peischl, T. Ryerson, C. Warneke, A.E. Perring, G.S. Diskin, J.P. DiGangi, J.B. Nowak, R.H. Moore, E.B. Wiggins, D. Pagonis, H. Guo, P. Campuzano-Jost, J.L. Jimenez, L. Xu, and R.J. Weber (2022), Characteristics and evolution of brown carbon in western United States wildfires, Atmos. Chem. Phys., doi:10.5194/acp-22-8009-2022.
Zhai, Q., Z. Peng, L.Y. Chuang, Y.-M. Wu, Y.-J. Hsu, and S. Wdowinski (2022), Investigating the Impacts of a Wet Typhoon on Microseismicity: A Case Study of the 2009 Typhoon Morakot in Taiwan Based on a Template Matching Catalog, J. Geophys. Res..
Zhang, B., S. Wdowinski, D. Gann, S.-H. Hong, and J. Sah (2022), Spatiotemporal variations of wetland backscatter: The role of water depth and vegetation characteristics in Sentinel-1 dual-polarization SAR observations, Remote Sensing of Environment, 270, 112864, doi:10.1016/j.rse.2021.112864.
Zhang, B., S. Wdowinski, and D. Gann (2022), Space-Based Detection of Significant Water-Depth Increase Induced by Hurricane Irma in the Everglades Wetlands Using Sentinel-1 SAR Backscatter Observations, Remote Sens., 14, 1415, doi:10.3390/rs14061415.
Zhang, H., J. Wang, L.C. García, M. Zhou, C. Ge, T. Plessel, J. Szykman, R.C. Levy, B. Murphy, and T.L. Spero (2022), Improving Surface PM2.5 Forecasts in the United States Using an Ensemble of Chemical Transport Model Outputs: 2. Bias Correction With Satellite Data for Rural Areas, J. Geophys. Res., 127, e2021JD035563, doi:10.1029/2021JD035563.
Zhang, L., R. Montuoro, S.A. McKeen, B. Baker, P.S. Bhattacharjee, G.A. Grell, J. Henderson, L. Pan, G.J. Frost, J. McQueen, R. Saylor, H. Li, R. Ahmadov, J. Wang, I. Stajner, S. Kondragunta, X. Zhang, and F. Li (2022), Development and Evaluation of the Aerosol Forecast Member in NCEP’s Global Ensemble Forecast System (GEFS-Aerosols v1), Geosci. Model. Dev. (submitted).
Zhang, L., G.A. Grell, S.A. McKeen, R. Ahmadov, K.D. Froyd, and D. Murphy (2022), Inline coupling of simple and complex chemistry modules within the global weather forecast model FIM (FIM-Chem v1), Geosci. Model. Dev., 15, 467-491, doi:10.5194/gmd-15-467-2022.
zhang, X., S. Wang, E.C. Apel, R. Schwantes, R.S. Hornbrook, A.J. Hills, K.E. Demarsh, Z. Moo, J. Ortega, W. Brune, R.L. Mauldin, C. Cantrell, A. Teng, D. Blake, T. Campos, B. Daube, L. Emmons, S. Hall, K. Ullmann, S. Wofsy, P.O. Wennberg, G.S. Tyndall, and J. Orlando (2022), Probing isoprene photochemistry at atmospherically relevant nitric oxide levels, Chem, 8, 2022, doi:10.1016/j.chempr.2022.08.003.
Zhao, B., M. Shrivastavaa, N.M. Donahue, H. Gordon, M. Schervish, J.E. Shilling, R.A. Zaveria, J. Wangg, M.O. Andreaeh, C. Zhaok, B. Gaudeta, Y. Liu, J. Fana, and J.D. Fast (2022), High concentration of ultrafine particles in the Amazon free troposphere produced by organic new particle formation, Proc. Natl. Acad. Sci., 117-25344, doi:10.1073/pnas.2006716117.
Zhao, T., J. Mao, W.R. Simpson, I. De Smedt, L. Zhu, T.F. Hanisco, G.M. Wolfe, J.M. St. Clair, G.G. Abad, C.R. Nowlan, B. Barletta, S. Meinardi, D.R. Blake, E.C. Apel, and R.S. Hornbrook (2022), Source and variability of formaldehyde (HCHO) at northern high latitude: an integrated satellite, aircraft, and model study, Atmos. Chem. Phys., 22, 7163-7178, doi:10.5194/acp-22-7163-2022.
Zheng, J., Z. Zhang, A. Garnier, H. Yu, Q. Song, C. Wang, P. Dubuisson, and C. Di Biagio (2022), The thermal infrared optical depth of mineral dust retrieved from integrated CALIOP and IIR observations, Remote Sensing of Environment, 270, 112841, doi:10.1016/j.rse.2021.112841.
Zheng, M., T. Mittal, K.E. Fauria, A. Subramaniam, and M. Jutzeler (2022), Pumice Raft Detection Using Machine-Learning on Multispectral Satellite Imagery, Front. Earth Sci., 10, 838532, doi:10.3389/feart.2022.838532.
Zhou, D.K., A.M. Larar, X. Liu, and X. Xiong (2022), Estimation of fire-induced CO plume age from NAST–I during the FIREX-AQ field campaign, Journal of Applied Remote Sensing 034522-1, doi:10.1117/1.JRS.16.034522.
Zhu, Q., J. Bi, X. Liu, S. Li, W. Wang, Y. Zhao, and Y. Liu (2022), Satellite-Based Long-Term Spatiotemporal Patterns of Surface Ozone Concentrations in China: 2005–2019, Research A Section 508-conformant HTML version of this article, doi:10.1289/EHP9406.
Zhu, Q., J.L. Laughner, and R.C. Cohen (2022), RESEARCH ARTICLE EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES OPEN ACCESS Estimate of OH trends over one decade in North American cities, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2117399119.
Zhu, Q., J.L. Laughner, and R.C. Cohen (2022), Combining machine learning and satellite observations to predict spatial and temporal variation of surface OH in cities, Env. Sci and Tech., 56, 7362-7371, doi:10.1021/acs.est.1c05636.