Publications for ACTIVATE
| Publication Citation |
|---|
| Dmitrovic, S., J.W. Hair, B.L. Collister, E. Crosbie, M.A. Fenn, R.A. Ferrare, D.B. Harper, C.A. Hostetler, Y. Hu, J.A. Reagan, C.E. Robinson, S.T. Seaman, T.J. Shingler, K.L. Thornhill, H. Vömel, X. Zeng, and A. Sorooshian (2024), High Spectral Resolution Lidar – generation 2 (HSRL-2) retrievals of ocean surface wind speed: methodology and evaluation, Atmos. Meas. Tech., 17, 3515-3532, doi:10.5194/amt-17-3515-2024. |
| Edwards, E.-L., A.F. Corral, H. Dadashazar, A. Barkley, C. Gaston, P. Zuidema, A. Sorooshian, et al. (2021), Impact of various air mass types on cloud condensation nuclei concentrations along coastal southeast Florida, Atmos. Environ., 254, 118371, doi:10.1016/j.atmosenv.2021.118371. |
| Edwards, E.-L., Y. Choi, E.C. Crosbie, J.P. DiGangi, G.S. Diskin, C.E. Robinson, M.A. Shook, E.L. Winstead, L.D. Ziemba, and A. Sorooshian (2024), Sea salt reactivity over the northwest Atlantic: an in-depth look using the airborne ACTIVATE dataset, Atmos. Chem. Phys., doi:10.5194/acp-24-3349-2024. |
| Ferrare, R., J. Hair, C. Hostetler, T. Shingler, S.P. Burton, M. Fenn, M. Clayton, A.J. Scarino, D. Harper, S. Seaman, A. Cook, E. Crosbie, E. Winstead, L. Ziemba, L. Thornhill, C. Robinson, R. Moore, M. Vaughan, A. Sorooshian, J.S. Schlosser, H. Liu, B. Zhang, G. Diskin, J. DiGangi, J. Nowak, Y. Choi, P. Zuidema, and S. Chellappan (2023), Airborne HSRL-2 measurements of elevated aerosol depolarization associated with non-spherical sea salt, TYPE Original Research, doi:10.3389/frsen.2023.1143944. |
| Gonzalez, M., A. Corral, E. Crosbie, H. Dadashazar, et al. (2022), Relationships between supermicrometer particle concentrations and cloud water sea salt and dust concentrations: analysis of MONARC and ACTIVATE data, Environmental Science: Atmospheres, doi:10.1039/d2ea00049k. |
| Gryspeerdt, E., J. Mülmenstädt, A. Gettelman, F.F. Malavelle, H. Morrison, D. Neubauer, D.G. Partridge, P. Stier, T. Takemura, H. Wang, M. Wang, and K. Zhang (2020), Surprising similarities in model and observational aerosol radiative forcing estimates, Atmos. Chem. Phys., 20, 613-623, doi:10.5194/acp-20-613-2020. |
| Gryspeerdt, E., D.T. McCoy, E. Crosbie, R.H. Moore, G.J. Nott, D. Painemal, J. Small-Griswold, A. Sorooshian, and L. Ziemba (2022), The impact of sampling strategy on the cloud droplet number concentration estimated from satellite data, Atmos. Meas. Tech., doi:10.5194/amt-2021-371. |
| Gryspeerdt, E., A.C. Povey, R.G. Grainger, O. Hasekamp, N.C. Hsu, J.P. Mulcahy, A.M. Sayer, and A. Sorooshian (2023), Uncertainty in aerosol–cloud radiative forcing is driven by clean conditions, Atmos. Chem. Phys., doi:10.5194/acp-23-4115-2023. |
| Hilario, M.R.A., E. Crosbie, P.A. Bañaga, G. Betito, R.A. Braun, M.O. Cambaliza, A.F. Corral, M.T. Cruz, J.E. Dibb, G.R. Lorenzo, A.B. MacDonald, C.E. Robinson, M.A. Shook, J.B. Simpas, C. Stahl, E. Winstead, L.D. Ziemba, and A. Sorooshian (2022), Particulate Oxalate-To-Sulfate Ratio as an Aqueous Processing Marker: Similarity Across Field Campaigns and Limitations, Geophys. Res. Lett.. |
| Kirschler, S., C. Voigt, B. Anderson, R.C. Braga, G. Chen, A.F. Corral, E. Crosbie, H. Dadashazar, R.A. Ferrare, V. Hahn, J. Hendricks, S. Kaufmann, R. Moore, M.L. Pöhlker, C. Robinson, A.J. Scarino, D. Schollmayer, M.A. Shook, K.L. Thornhill, E. Winstead, L.D. Ziemba, and A. Sorooshian (2022), Seasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic, Atmos. Chem. Phys., doi:10.5194/acp-22-8299-2022. |
| Li, X.-Y., A. Hailong Wang, A. Jingyi Chen, A. Satoshi Endo, B. Geet George, C. Brian Cairns, S. Chellappan, E. Xubin Zeng, F. Simon Kirschler, H. Christiane Voigt, H. Armin Sorooshian, E. Crosbie, L. Gao Chen, J. Richard Anthony Ferrare, J.I. William Gustafson, J.W. Hair, J.M. Mary Kleb, J. Hongyu Liu, K. Richard Moore, J. David Painemal, C. Robinson, L.J.O. Amy Scarino, L. Michael Shook, J.J. Taylor Shingler, and J. Kenneth Lee Thornhill (2022), Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part I: Case Setup and Sensitivities to Large-Scale Forcings, J. Atmos. Sci., 79, 73-100, doi:10.1175/JAS-D-21-0123.1. |
| Li, X.-Y., H. Wang, J. Chen, S. Endo, S. Kirschler, C. Voigt, E. Crosbie, L. Ziemba, D. Painemal, B. Cairns, J.W. Hair, A.F. Corral, C. Robinson, H. Dadashazar, A. Sorooshian, G. Chen, R.A. Ferrare, M.M. Kleb, H. Liu, R. Moore, A.J. Scarino, M.A. Shook, T.J. Shingler, K.L. Thornhill, F. Tornow, K. Heng Xiao, and X. Zeng (2023), Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part II: Aerosol–Meteorology–Cloud Interaction, J. Atmos. Sci., 80, 1025-1045, doi:10.1175/JAS-D-21-0324.1. |
| Li, X., H. Wang, M.W. Christensen, J. Chen, S. Tang, S. Kirschler, E. Crosbie, L.D. Ziemba, D. Painemal, A.F. Corral, K.A. McCauley, S. Dmitrovic, A. Sorooshian, M. Fenn, J.S. Schlosser, S. Stamnes, J.W. Hair, B. Cairns, R. Moore, R.A. Ferrare, M.A. Shook, Y. Choi, G.S. Diskin, J. DiGangi, J.B. Nowak, C. Robinson, T.J. Shingler, K.L. Thornhill, and C. Voigt (2024), Process Modeling of Aerosol‐Cloud Interaction in Summertime Precipitating Shallow Cumulus Over the Western North Atlantic, J. Geophys. Res., 129, e2023JD039489, doi:10.1029/2023JD039489. |
| Ma, L., H. Dadashazar, M.R.A. Hilario, M.O. Cambaliza, G.R. Lorenzo, J.B. Simpas, P. Nguyen, and A. Sorooshian (2021), Contrasting wet deposition composition between three diverse islands and coastal North American sites, Atmos. Environ., 244, 117919, doi:10.1016/j.atmosenv.2020.117919. |
| MacDonald, A.B., A.H. Mardi, H. Dadashazar, M.A. Aghdam, E. Crosbie, H.H. Jonsson, R.C. Flagan, J.H. Seinfeld, and A. Sorooshian (2020), On the relationship between cloud water composition and cloud droplet number concentration, Atmos. Chem. Phys., 20, 7645-7665, doi:10.5194/acp-20-7645-2020. |
| Mardi, A.H., H. Dadashazar, A.B. MacDonald, E. Crosbie, M.M. Coggon, M.A. Aghdam, R.K. Woods, H.H. Jonsson, R.C. Flagan, J.H. Seinfeld, and A. Sorooshian (2019), All Rights Reserved. Effects of Biomass Burning on Stratocumulus Droplet Characteristics, Drizzle Rate, and Composition, J. Geophys. Res., 124, 12,301-12,318, doi:10.1029/2019JD031159. |
| Mardi, A.H., H. Dadashazar, D. Painemal, T. Shingler, S.T. Seaman, M.A. Fenn, C.A. Hostetler, and A. Sorooshian (2021), Biomass Burning Over the United States East Coast and Western North Atlantic Ocean: Implications for Clouds and Air Quality, J. Geophys. Res., 126, e2021JD034916, doi:10.1029/2021JD034916. |
| Nied, J., M. Jones, S. Seaman, T. Shingler, J. Hair, B. Cairns, D.V. Gilst, A. Bucholtz, S. Schmidt, S. Chellappan, P. Zuidema, B. Van Diedenhoven, A. Sorooshian, and S. Stamnes (2023), A cloud detection neural network for above-aircraft clouds using airborne cameras, Frontiers in Remote Sensing, 4, 10.3389/frsen.2023.1118745, doi:10.3389/frsen.2023.1118745. |
| Ouyed, A., X. Zeng, L. Wu, D. Posselt, and H. Su (2021), Two-Stage Artificial Intelligence Algorithm for Calculating Moisture-Tracking Atmospheric Motion Vectors, J. Appl. Meteor. Climat., 60, 1671-1684, doi:10.1175/JAMC-D-21-0070.1. |
| Painemal, D., F.-L. Chang, R. Ferrare, S. Burton, Z. Li, W.L. Smith, P. Minnis, Y. Feng, and M. Clayton (2020), Reducing uncertainties in satellite estimates of aerosol–cloud interactions over the subtropical ocean by integrating vertically resolved aerosol observations, Atmos. Chem. Phys., 20, 7167-7177, doi:10.5194/acp-20-7167-2020. |
