This page lists the publications in the ESD Publications database, sorted by first author and year. To filter the list, select one or more Research Program(s) to filter the list, or else specify a publication year (e.g., 2011). Options to view other pages of the list are provided at the bottom of the page.

Publication Citation Research Program(s)
Baasandorj, M., B. D. Hall, and J. Burkholder (2012), Rate coefficients for the reaction of O(1D) with the atmospherically long-lived greenhouse gases NF3, SF5CF3, CHF3, C2F6, c-C4F8, n-C5F12, and n-C6F14, Atmos. Chem. Phys., 12, 11753-11764, doi:10.5194/acp-12-11753-2012. UARP
Baasandorj, M., et al. (2010), Rate Coefficients for the Gas-Phase Reaction of the Hydroxyl Radical with CH2dCHF and CH2dCF2, J. Phys. Chem. A, 114, 4619-4633, doi:10.1021/jp100527z. UARP
Baasandorj, M., et al. (2013), O(1D) Kinetic Study of Key Ozone Depleting Substances and Greenhouse Gases, J. Phys. Chem. A, 117, 2434-2445, doi:10.1021/jp312781c. ACMAP
Baasandorj, M., et al. (2018), Rate Coefficient Measurements and Theoretical Analysis of the OH + (E)‑CF3CHHCHCF3 Reaction, J. Phys. Chem. A, 122, 4635-4646, doi:10.1021/acs.jpca.8b02771.
Baasandorj, M., V. C. Papadimitriou, and J. Burkholder (2019), Rate Coefficients for the Gas-Phase Reaction of (E)- and (Z)‑CF3CFHCFCF3 with the OH Radical and Cl-Atom, J. Phys. Chem. A, 123, 5051-5060, doi:10.1021/acs.jpca.9b03095.
Babila, J. E., et al. (2021), On Aerosol Liquid Water and Sulfate Associations: The Potential for Fine Particulate Matter Biases, doi:10.3390/atmos11020194.
Bacmeister, J., and G. L. Stephens (2011), Spatial statistics of likely convective clouds in CloudSat data, J. Geophys. Res., 116, D04104, doi:10.1029/2010JD014444.
Bacmeister, J., et al. (1992), An Estimate of the Relative Magnitude of Small-Scale Tracer Fluxes, Geophys. Res. Lett., 19, 1101-1104.
Bacmeister, J., et al. (1994), An Algorithm for Forecasting Mountain Waves Related Turbulence in the Stratosphere, Weather and Forecast, 9, 214-253.
Bacmeister, J., et al. (1996), Stratospheric horizontal wavenumber of winds, potential temperature and atmospheric tracers observed by high-altitude aircraft, J. Geophys. Res., 101, 9441-9470.
Bacour, C., et al. (2019), Differences Between OCO‐2 and GOME‐2 SIF Products From a Model‐Data Fusion Perspective, J. Geophys. Res., 124, 3143-3157, doi:10.1029/2018JG004938. CCEP
Bae, S., et al. (2021), Performance of ICESat‐2 Precision Pointing Determination, Earth and Space Science., e2020EA001478, doi:10.1029/2020EA001478. CSP
Bahreini, R., et al. (2008), Design and Operation of a Pressure-Controlled Inlet for Airborne Sampling with an Aerodynamic Aerosol Lens, Aerosol Science and Technology, 42, 465-471, doi:10.1080/02786820802178514. TCP
Bai, L., et al. (2023), Sub-mesoscale wind-front interactions: The combined impact of thermal and current feedback, doi:10.22541/essoar.168626408.83305955/v1 (submitted). POP
Bai, W., et al. (2020), A fast and accurate vector radiative transfer model for simulating the near-infrared hyperspectral scattering processes in clear atmospheric conditions, J. Quant. Spectrosc. Radiat. Transfer, 242, 106736, doi:10.1016/j.jqsrt.2019.106736.
Baier, B. C., et al. (2015), Direct ozone production rate measurements and their use in assessing ozone source and receptor regions for Houston in 2013, Atmos. Environ., 114, 83-91, doi:10.1016/j.atmosenv.2015.05.033. TCP
Baier, B. C., et al. (2017), Higher measured than modeled ozone production at increased NOx levels in the Colorado Front Range, Atmos. Chem. Phys., 17, 11273-11292, doi:10.5194/acp-17-11273-2017. TCP
Baines, K. H., et al. (1992), Quasi-Random Narrow Band Model Fits to 1.6-2.5mm Laboratory Methane Spectra and Application to Jupiter, J. Geophys. Res., In press.
Baines, K., et al. (1993), Quasi-Random Narrow-Band Model Fits to Near-Infrared Low-Temperature Laboratory Methane Spectra and Derived Exponential-Sum Absorption Coefficients, J. Geophys. Res., 98, 5517-5529.
Bak, J., et al. (2013), Improvement of OMI ozone profile retrievals in the upper troposphere and lower stratosphere by the use of a tropopause-based ozone profile climatology, Atmos. Meas. Tech., 6, 2239-2254, doi:10.5194/amt-6-2239-2013.

Pages

CSV