This page lists the publications in the ESD Publications database, sorted by first author and year. To filter the list, select one or more Research Program(s) to filter the list, or else specify a publication year (e.g., 2011). Options to view other pages of the list are provided at the bottom of the page.

Publication Citation Research Program(s)
Adachi, K., et al. (2022), Fine ash-bearing particles as a major aerosol component in biomass burning smoke, J. Geophys. Res., 127, e2021JD035657, doi:10.1029/2021JD035657. TCP
Allen, H., et al. (2022), H2O2 and CH3OOH (MHP) in the Remote Atmosphere: 2. Physical and Chemical Controls, J. Geophys. Res., 127, doi:10.1029/2021JD035702. TCP
Allen, H., et al. (2022), H2O2 and CH3OOH (MHP) in the Remote Atmosphere: 1. Global Distribution and Regional Influences, J. Geophys. Res., 127, doi:10.1029/2021JD035701. TCP
Bak, J., et al. (2022), remote sensing Technical Note Impact of Using a New High-Resolution Solar Reference Spectrum on OMI Ozone Profile Retrievals, Remote Sens., 14, 37, doi:10.3390/rs14010037.
Baublitz, C., et al. (2022), Formaldehyde as a Proxy for Hydroxyl Radical Variability in the Remote Troposphere, J. Geophys. Res. (submitted). TCP
Benavent, N., et al. (2022), Substantial contribution of iodine to Arctic ozone destruction, Nature Geoscience, 15, 770-773, doi:10.1038/s41561-022-01018-w. TCP
Bian, Q., et al. (2022), Constraining Aerosol Phase Function Using Dual-View Geostationary Satellites, J. Geophys. Res.. ACMAP
Bian, Q., et al. (2022), Constraining Aerosol Phase Function Using Dual-View Geostationary Satellites, J. Geophys. Res.. ACMAP
Bourgeois, I., et al. (2022), Large contribution of biomass burning emissions to ozone throughout the global remote troposphere, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2109628118. TCP
Brune, W. H., et al. (2022), Observations of atmospheric oxidation and ozone production in South Korea, Atmos. Environ., 269, 118854, doi:10.1016/j.atmosenv.2021.118854. TCP
Carn, S. A., et al. (2022), Out of the blue: Volcanic SO2 emissions during the 2021-2022 eruptions of Hunga Tonga—Hunga Ha’apai (Tonga), Front. Earth Sci., 10, doi:10.3389/feart.2022.976962. IDS, , ESI
Carroll, B. J., et al. (2022), Differential absorption lidar measurements of water vapor by the High Altitude Lidar Observatory (HALO): retrieval framework and first results, Atmos. Meas. Tech., 15, 605-626, doi:10.5194/amt-15-605-2022. , EWCP, ADP
Chen, X., et al. (2022), Analytical Prediction of Scattering Properties of Spheroidal Dust Particles With Machine Learning, Geophys. Res. Lett., 49, e2021GL097548, doi:10.1029/2021GL097548. ASP, MAP, , ACMAP
Cho, C., et al. (2022), a petrochemical industry and its volatile organic compounds (VOCs) emission rate, Elementa: Science of the Anthropocene, 9, doi:10.1525/elementa.2021.00015. , TCP
Choudhury, G., A. Ansmann, and M. Tesche (2022), Evaluation of aerosol number concentrations from CALIPSO with ATom airborne in situ measurements, Atmos. Chem. Phys., 22, 7143-7161, doi:10.5194/acp-22-7143-2022. TCP
Christensen, M. W., et al. (2022), Opportunistic experiments to constrain aerosol effective radiative forcing, Atmos. Chem. Phys., doi:10.5194/acp-22-641-2022. ACMAP
Christensen, M. W., et al. (2022), Opportunistic experiments to constrain aerosol effective radiative forcing, Atmos. Chem. Phys., doi:10.5194/acp-22-641-2022. RSP
Clapp, C., and J. Anderson (2022), Modeling the Effect of Potential Nitric Acid Removal During Convective Injection of Water Vapor Over the Central United States on the Chemical Composition of the Lower Stratosphere, J. Geophys. Res.. , UARP
Clapp, C., et al. (2022), Identifying Outflow Regions of North American Monsoon Anticyclone-Mediated Meridional Transport of Convectively Influenced Air Masses in the Lower Stratosphere, J. Geophys. Res.. , UARP
Cochrane, S. P., et al. (2022), Biomass burning aerosol heating rates from the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) 2016 and 2017 experiments, Atmos. Meas. Tech., 15, 61-77, doi:10.5194/amt-15-61-2022. , RSP

Pages

CSV