This page lists the publications in the ESD Publications database, sorted by first author and year. To filter the list, select one or more Research Program(s) to filter the list, or else specify a publication year (e.g., 2011). Options to view other pages of the list are provided at the bottom of the page.

Publication Citation Research Program(s)
Schill, G., et al. (2020), Widespread biomass burning smoke throughout the remote troposphere, Nat. Geosci., 13, 422-427, doi:10.1038/s41561-020-0586-1. TCP
Schlosser, J., et al. (2020), Relationships Between Supermicrometer Sea Salt Aerosol and Marine Boundary Layer Conditions: Insights From Repeated Identical Flight Patterns, J. Geophys. Res., 125, e2019JD032346, doi:10.1029/2019JD032346. RSP
Schneider, F., et al. (2020), Towards mapping the diversity of canopy structure from space with GEDI, Environmental Research Letters, doi:10.1088/1748-9326/ab9e99. CCEP
Scholze, M., et al. (2020), Mean European Carbon Sink Over 2010–2015 Estimated by Simultaneous Assimilation of Atmospheric CO2 , Soil Moisture, and Vegetation Optical Depth, Geophys. Res. Lett., 46, doi:10.1029/2019GL085725.
Schroeder, J. R., et al. (2020), Observation-based modeling of ozone chemistry in the Seoul metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ), Elem Sci Anth, 8, doi:10.1525/elementa.400. , TCP
Schulze, B. C., et al. (2020), Accepted article online 3 JUN 2020 Characterization of Aerosol Hygroscopicity Over the Northeast Pacific Ocean: Impacts on Prediction of CCN and Stratocumulus Cloud Droplet Number Concentrations, Earth and Space Science, 7, e2020EA001098, doi:10.1029/2020EA001098. RSP
Schwalm, C. R., et al. (2020), Modeling suggests fossil fuel emissions have been driving increased land carbon uptake since the turn of the 20th Century, Scientific Reports, 10, 1-9, doi:10.1038/s41598-020-66103-9. CCEP
Schwantes, R., et al. (2020), Comprehensive isoprene and terpene gas-phase chemistry improves simulated surface ozone in the southeastern US, Atmos. Chem. Phys., 20, 3739-3776, doi:10.5194/acp-20-3739-2020. , TCP
Scott, C. P., S. DeLong, and R. Arrowsmith (2020), Distribution of Aseismic Deformation Along the Central San Andreas and Calaveras Faults From Differencing Repeat Airborne Lidar, Geophys. Res. Lett., 47, e2020GL090628, doi:10.1029/2020GL090628. ESI
Segal-Rozenhaimer, M., et al. (2020), Cloud detection algorithm for multi-modal satellite imagery using T convolutional neural-networks (CNN), Remote Sensing of Environment, 237, 111446, doi:10.1016/j.rse.2019.111446. ASP, OBB
Sekiya, T., et al. (2020), Global Bromine- and Iodine-Mediated Tropospheric Ozone Loss Estimated Using the CHASER Chemical Transport Model, Sola, 16, 220−227, doi:10.2151/sola.2020-037. TCP
Shah, V., et al. (2020), Effect of changing NOx lifetime on the seasonality and long-term trends of satellite-observed tropospheric NO2 columns over China, Atmos. Chem. Phys., 20, 1483-1495, doi:10.5194/acp-20-1483-2020. ACMAP
Shen, J., et al. (2020), Spatial pattern and seasonal dynamics of the photosynthesis activity across T Australian rainfed croplands ⁎, Ecological Indicators, 108, 105669, doi:10.1016/j.ecolind.2019.105669. CCEP
Shen, L., et al. (2020), An adaptive method for speeding up the numerical integration of chemical mechanisms in atmospheric chemistry models: application to GEOS-Chem version 12.0.0, Geosci. Model. Dev., 13, 2475-2486, doi:10.5194/gmd-13-2475-2020. MAP
Shen, Z., and Z. Liu (2020), Integration of GPS and InSAR data for resolving 3‐dimensional crustal deformation, Earth and Space Science, 7, e2019EA001036, doi:10.1029/2019EA001036. ESI
Shi, M., et al. (2020), Exposure to cold temperature affects the spring phenology of Alaskan deciduous vegetation types, Environmental Research Letters, 15, 025006. IDS
Shinozuka, Y., et al. (2020), Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016, Atmos. Chem. Phys., 20, 11491-11526, doi:10.5194/acp-20-11491-2020.
Shinozuka, Y., et al. (2020), Daytime aerosol optical depth above low-level clouds is similar to that in adjacent clear skies at the same heights: airborne observation above the southeast Atlantic, Atmos. Chem. Phys., 20, 11275-11285, doi:10.5194/acp-20-11275-2020.
Shinozuka, Y., et al. (2020), Daytime aerosol optical depth above low-level clouds is similar to that in adjacent clear skies at the same heights: airborne observation above the southeast Atlantic, Atmos. Chem. Phys., doi:10.5194/acp-2019-1007 (submitted). , RSP
Silber, I., et al. (2020), Nonturbulent Liquid‐Bearing Polar Clouds: Observed Frequency of Occurrence and Simulated Sensitivity to Gravity Waves, Geophys. Res. Lett.. MAP

Pages

CSV