This page lists the publications in the ESD Publications database, sorted by first author and year. To filter the list, select one or more Research Program(s) to filter the list, or else specify a publication year (e.g., 2011). Options to view other pages of the list are provided at the bottom of the page.

Publication Citation Research Program(s)
Donnellan, A., et al. (2018), Platforms: UAVSAR and Structure from Motion, Geodetic Imaging of Fault Systems from Airborne. ESI
Dorrestijn, J., et al. (2018), Instantaneous variance scaling of AIRS thermodynamic profiles using a circular area Monte Carlo approach, Atmos. Meas. Tech., 11, 2717-2733, doi:10.5194/amt-11-2717-2018.
Durden, S. (2018), Relating GPM Radar Reflectivity Profile Characteristics to Path Integrated Attenuation, IEEE Trans. Geosci. Remote Sens., 56, 4065-4074. ADP
Eastham, S. D., et al. (2018), GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications, Geosci. Model. Dev., 11, 2941-2953, doi:10.5194/gmd-11-2941-2018. MAP, ACMAP
Ervens, B., et al. (2018), Is there an aerosol signature of chemical cloud processing?, Atmos. Chem. Phys., 18, 16099-16119, doi:10.5194/acp-18-16099-2018. TCP
Fain, R., et al. (2018), CMOS-compatible Mid-Infrared Silicon Detector , Conference on Lasers and Electro-Optics, doi:10.1364/CLEO_SI.2017.STu1N.4. RSP
Fan, X., et al. (2018), Using a MODIS Index to Quantify MODIS-AVHRRs Spectral Differences in the Visible Band , Remote Sensing, 10, doi:10.3390/rs10010061. RSP
Feltz, M. L. (2018), Assessment of COSMIC radio occultation and AIRS hyperspectral IR sounder temperature products in the stratosphere using observed radiances , J. Geophys. Res., 122, 8593-8616, doi:10.1002/2017JD026704. RSP
Feng, J., et al. (2018), Cloud-Assisted Retrieval of Lower-Stratospheric Water Vapor from Nadir-View Satellite Measurements , J. Atmos. Oceanic Technol., 35, 541-553, doi:10.1175/JTECH-D-17-0132.1. RSP
Ferraz, A., et al. (2018), Carbon Storage Potential in Degraded Forests of Kalimantan, Indonesia. Environmental Research Letters, 13, doi:10.1088/1748-9326/aad782. CCEP
Ferraz, A., et al. (2018), Fusion of NASA Airborne Snow Observatory (ASO) Lidar Time Series over Mountain Forest Landscapes, Remote Sensing, 10, 1-16, doi:10.3390/rs10020164. CCEP
Fiore, A. M., et al. (2018), Peroxy acetyl nitrate (PAN) measurements at northern midlatitude mountain sites in April: a constraint on continental source–receptor relationships, Atmos. Chem. Phys., 18, 15345-15361, doi:10.5194/acp-18-15345-2018. MAP
Fisher, J. A., et al. (2018), Methyl, Ethyl, and Propyl Nitrates: Global Distribution and Impacts on Reactive Nitrogen in Remote Marine Environments, J. Geophys. Res., 123, 12,429-12,451, doi:10.1029/2018JD029046. TCP
Flower, V. J. B., and R. Kahn (2018), Karymsky volcano eruptive plume properties based on MISR multi-angle imagery and the volcanological implications, Atmos. Chem. Phys., 18, 3903-3918, doi:10.5194/acp-18-3903-2018. ACMAP, ESI
Foster, M. J., et al. (2018), State of the Climate in 2017: Cloudiness, Bull. Am. Meteor. Soc., 99, S31-S33. RSP
Frankenberg, C., et al. (2018), The Chlorophyll Fluorescence Imaging Spectrometer (CFIS), mapping far red T fluorescence from aircraft, Remote Sensing of Environment, 217, 523-536, doi:10.1016/j.rse.2018.08.032.
Friberg, M. D., et al. (2018), Constraining chemical transport PM2.5 modeling outputs using surface monitor measurements and satellite retrievals: application over the San Joaquin Valley, Atmos. Chem. Phys., 18, 12891-12913, doi:10.5194/acp-18-12891-2018. ASP, ACMAP
Fu, D., et al. (2018), Retrievals of tropospheric ozone profiles from the synergism of AIRS and OMI: methodology and validation, Atmos. Meas. Tech., 11, 5587-5605, doi:10.5194/amt-11-5587-2018.
Furtney, M. A., et al. (2018), Synthesizing multi-sensor, multi-satellite, multi-decadal datasets for global volcano monitoring, Journal of Volcanology and Geothermal Research, 365, 38-56, doi:10.1016/j.jvolgeores.2018.10.002. ESI
Ganeshan, M., and Y. Yang (2018), A Regional Analysis of Factors Affecting the Antarctic Boundary Layer During the Concordiasi Campaign, J. Geophys. Res., 123, doi:10.1029/2018JD028629.

Pages

CSV