Pubs by Program

This page lists the publications in the ESD Publications database, sorted by first author and year. To filter the list, select one or more Research Program(s) to filter the list, or else specify a publication year (e.g., 2011). Options to view other pages of the list are provided at the bottom of the page.

Publication Citation Research Program(s)
Scarino, B., P. Minnis, R. Palikonda, R.H. Reichle, D. Morstad, C. Yost, B. Shan, and Q. Liu (2013), Retrieving Clear-Sky Surface Skin Temperature for Numerical Weather Prediction Applications from Geostationary Satellite Data, Remote Sens., 5, 342-366, doi:10.3390/rs5010342. MAP
Scarino, B.R., D.R. Doelling, P. Minnis, A. Gopalan, T. Chee, R. Bhatt, C. Lukashin, and C. Haney (2016), A Web-Based Tool for Calculating Spectral Band Difference Adjustment Factors Derived From SCIAMACHY Hyperspectral Data, IEEE Trans. Geosci. Remote Sens., 54, 2529-2542, doi:10.1109/TGRS.2015.2502904. MAP
Scarino, B.R., P. Minnis, T. Chee, K.M. Bedka, C.R. Yost, and R. Palikonda (2017), Global clear-sky surface skin temperature from multiple satellites using a single-channel algorithm with angular anisotropy corrections, Atmos. Meas. Tech., 10, 351-371, doi:10.5194/amt-10-351-2017. MAP
Schmidt, G.A., and D.T. Shindell (2004), A note on the relationship between ice core methane concentrations and insolation, Geophys. Res. Lett., 31, L23206, doi:10.1029/2004GL021083. ACMAP, MAP
Schmidt, G.A., and D.T. Shindell (2005), Reply to comment by W. F. Ruddiman on ‘‘A note on the relationship between ice core methane concentrations and insolation’’, Geophys. Res. Lett., 32, L15704, doi:10.1029/2005GL022982. ACMAP, MAP
Schmidt, G.A., D.T. Shindell, R.L. Miller, M.E. Mann, and D. Rind (2004), General circulation modelling of Holocene climate variability, Quaternary Science Reviews, 23, 2167, doi:10.1016/j.quascirev.2004.08.005. ACMAP, MAP
Schmidt, G.A., G. Hoffmann, D.T. Shindell, and Y. Hu (2005), Modeling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere-troposphere water exchange, J. Geophys. Res., 110, D21314, doi:10.1029/2005JD005790. ACMAP, MAP
Schmidt, G.A., R. Ruedy, J.E. Hansen, I. Aleinov, N. Bell, M. Bauer, S. Bauer, B. Cairns, V. Canuto, Y. Cheng, A. Del Genio, G. Faluvegi, A.D. Friend, T.M. Hall, Y. Hu, M. Kelley, N.Y. Kiang, D. Koch, A.A. Lacis, J. Lerner, K.K. Lo, R.L. Miller, L. Nazarenko, V. Oinas, J. Perlwitz, J. Perlwitz, D. Rind, A. Romanou, G.L. Russell, M. Sato, D.T. Shindell, P.H. Stone, S. Sun, N. Tausnev, D. Thresher, and M.-S. Yao (2006), Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data, J. Climate, 19, 153-192. ACMAP, MAP
Schmidt, G.A., J.H. Jungclaus, C.M. Ammann, E. Bard, P. Braconnot, T.J. Crowley, G. Delaygue, F. Joos, N.A. Krivova, R. Muscheler, B.L. Otto-Bliesner, J. Pongratz, D.T. Shindell, S.K. Solanki, F. Steinhilber, and L.E.A. Vieira (2011), Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0), Geosci. Model Dev., 4, 33-45, doi:10.5194/gmd-4-33-2011. ACMAP, MAP
Schnell, J.L., and M.J. Prather (2017), Co-occurrence of extremes in surface ozone, particulate matter, and temperature over eastern North America, Proc. Natl. Acad. Sci., 114, 2854-2859, doi:10.1073/pnas.1614453114. MAP, ACMAP
Schnell, J.L., C.D. Holmes, A. Jangam, and M.J. Prather (2014), Skill in forecasting extreme ozone pollution episodes with a global atmospheric chemistry model, Atmos. Chem. Phys., 14, 7721-7739, doi:10.5194/acp-14-7721-2014. ACMAP, MAP
Schnell, J.L., M.J. Prather, B. Josse, V. Naik, L.W. Horowitz, P. Cameron-Smith, D. Bergmann, G. Zeng, D.A. Plummer, K. Sudo, T. Nagashima, D.T. Shindell, G. Faluvegi, and S.A. Strode (2015), Use of North American and European air quality networks to evaluate global chemistry-climate modeling of surface ozone, Atmos. Chem. Phys. Discuss., 15, 1-39, doi:10.5194/acpd-15-1-2015. MAP
Schoeberl, M.R., B.N. Duncan, A.R. Douglass, J. Waters, N. Livesey, W. Read, and M. Filipiak (2006), The carbon monoxide tape recorder, Geophys. Res. Lett., 33, L12811, doi:10.1029/2006GL026178. MAP
Schwalm, C.R., D.N. Huntinzger, A.M. Michalak, J.B. Fisher, J.S. Kimball, B. Mueller, K. Zhang, and Y. Zhang (2013), Sensitivity of inferred climate model skill to evaluation decisions: a case study using CMIP5 evapotranspiration, Environmental Research Letters, 8, doi:10.1088/1748-9326/8/2/024028. IDS, MAP
Schwartz, M.J., D.E. Waliser, B. Tian, D.L. Wu, J.H. Jiang, and W.G. Read (2008), Characterization of MJO-related upper tropospheric hydrological processes using MLS, Geophys. Res. Lett., 35, L08812, doi:10.1029/2008GL033675. MAP, Atmospheric Composition, EWCP, Climate Variability and Change Program, ADP
Serra, Y.L., X.A. Jiang, B. Tian, J. Amador-Astua, E.D. Maloney, and G.N. Kiladis (2014), Tropical Intraseasonal Modes of the Atmosphere, The Annual Review of Environment and Resources, 39, 189-215, doi:10.1146/annurev-environ-020413-134219. MAP, EWCP, Climate Variability and Change Program, ADP
Shen, L., D.J. Jacob, M. Santillana, X. Wang, and W. Chen (2020), An adaptive method for speeding up the numerical integration of chemical mechanisms in atmospheric chemistry models: application to GEOS-Chem version 12.0.0, Geosci. Model. Dev., 13, 2475-2486, doi:10.5194/gmd-13-2475-2020. MAP
Shen, L., D.J. Jacob, M. Santillana, K. Bates, J. Zhuang, and W. Chen (2022), A machine-learning-guided adaptive algorithm to reduce the computational cost of integrating kinetics in global atmospheric chemistry models: application to GEOS-Chem versions 12.0.0 and 12.9.1, Geosci. Model. Dev., 15, 1677-1687, doi:10.5194/gmd-15-1677-2022. MAP
Shi, J.J., T. Matsui, W. Tao, Q. Tan, C. Peters-Lidard, M. Chin, K.E. Pickering, N. Guy, E.S. Lang, and E.M. Kemp (2014), Implementation of an aerosol–cloud-microphysics–radiation coupling into the NASA unified WRF: Simulation results for the 6–7 August 2006 AMMA special observing period, Q. J. R. Meteorol. Soc., 140, 2158-2175, doi:10.1002/qj.2286. MAP
Shiga, Y.P., A.M. Michalak, S.R. Kawa, and R.J. Engelen (2013), In-situ CO2 monitoring network evaluation and design: A criterion based on atmospheric CO2 variability, J. Geophys. Res., 118, 2007-2018, doi:10.1002/jgrd.50168. IDS, MAP