Pubs by Program

This page lists the publications in the ESD Publications database, sorted by first author and year. To filter the list, select one or more Research Program(s) to filter the list, or else specify a publication year (e.g., 2011). Options to view other pages of the list are provided at the bottom of the page.

Publication Citation Research Program(s)
Cho, C., J.M.St. Clair, J. Liao, G.M. Wolfe, S. Jeong, D. Kang, J. Choi, M.-H. Shin, J. Park, J.-H. Park, A. Fried, A. Weinheimer, D.R. Blake, G.S. Diskin, K. Ullmann, S.R. Hall, W.H. Brune, T.F.&. Hanisco, and K.-E. Min (2022), a petrochemical industry and its volatile organic compounds (VOCs) emission rate, Elementa: Science of the Anthropocene, 9, doi:10.1525/elementa.2021.00015. Atmospheric Composition, TCP
Cho, C., J. St. Clair, J. Liao, G. Wolfe, S. Jeong, D. Kang, J. Choi, M.-H. Shin, J. Park, J.-H. Park, A. Fried, A. Weinheimer, D. Blake, G. Diskin, K. Ullmann, S. Hall, W. Brune, T. Hanisco, and K.-E. Min (2023), a petrochemical industry and its volatile organic compounds (VOCs) emission rate, Elem Sci Anth, 9, doi:10.1525/elementa.2021.00015. Atmospheric Composition, TCP
Cho, H.-M., P. Yang, G.W. Kattawar, S.L. Nasiri, Y. Hu, P. Minnis, C. Trepte, and D. Winker (2008), Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements, Opt. Express, 16, 3931-3948. MAP, RSP
Cho, H., Z. Zhang, K. Meyer, M. Lebsock, S. Platnick, A.S. Ackerman, L. Di Girolamo, L.C. Labonnote, C. Cornet, J. Riedi, and R.E. Holz (2015), Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans, J. Geophys. Res., 120, doi:10.1002/2015JD023161. ACMAP, RSP
Choi, H.-D., H. Liu, J.H. Crawford, D.B. Considine, D.J. Allen, B.N. Duncan, L.W. Horowitz, J.M. Rodriguez, S.E. Strahan, L. Zhang, X. Liu, M.R. Damon, and S.D. Steenrod (2017), Global O3–CO correlations in a chemistry and transport model during July–August: evaluation with TES satellite observations and sensitivity to input meteorological data and emissions, Atmos. Chem. Phys., 17, 8429-8452, doi:10.5194/acp-17-8429-2017. MAP, ACMAP
Choi, H., X. Liu, G. Gonzalez Abad, J. Seo, K.-M. Lee, and J.A. Kim (2021), Fast Retrieval of Cloud Parameters Using a Triplet of Wavelengths of Oxygen Dimer Band around 477 nm, Remote Sens., 13, 152, doi:10.3390/rs13010152. Atmospheric Composition
Choi, S., Y. Wang, R.J. Salawitch, T. Canty, J. Joiner, T. Zeng, T.P. Kurosu, K. Chance, A. Richter, L.G. Huey, J. Liao, J.A. Neuman, J.B. Nowak, J.E. Dibb, A.J. Weinheimer, G. Diskin, T.B. Ryerson, A. da Silva, J. Curry, D. Kinnison, S. Tilmes, and P.F. Levelt (2012), Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC, Atmos. Chem. Phys., 12, 1255-1285, doi:10.5194/acp-12-1255-2012. TCP
Chong, H., S. Lee, J. Kim, U. Jeong, C. Li, N.A. Krotkov, C.R. Nowlan, J.A. Al-Saadi, S.J. Janz, M.G. Kowalewski, M.-H. Ahn, M. Kang, J. Joiner, D.P. Haffner, L. Hu, P. Castellanos, L.G. Huey, M. Choi, C.H. Song, K.M. Han, and J.-H. Koo (2020), High-resolution mapping of SO2 using airborne observations from the T GeoTASO instrument during the KORUS-AQ field study: PCA-based vertical column retrievals ⁎, Remote Sensing of Environment, 241, 111725, doi:10.1016/j.rse.2020.111725. Atmospheric Composition, ACMAP, TCP
Choudhury, G., A. Ansmann, and M. Tesche (2022), Evaluation of aerosol number concentrations from CALIPSO with ATom airborne in situ measurements, Atmos. Chem. Phys., 22, 7143-7161, doi:10.5194/acp-22-7143-2022. TCP
Chowdhury, S., S. Dey, L. Di Girolamo, K.R. Smith, A. Pillarisetti, and A. Lyapustin (2019), Tracking ambient PM2.5 build-up in Delhi national capital region during the dry T season over 15 years using a high-resolution (1 km) satellite aerosol dataset, Atmos. Environ., 204, 142-150, doi:10.1016/j.atmosenv.2019.02.029. RSP
Chowdhury, S., S. Dey, S. Guttikunda, A. Pillarisetti, K.R. Smith, and L. Di Girolamo (2019), Indian annual ambient air quality standard is achievable by completely mitigating emissions from household sources, Proc. Natl. Acad. Sci., doi:10. RSP
Christensen, L.E., M. Okumura, S.P. Sander, R.J. Salawitch, G.C. Toon, B. Sen, J.F. Blavier, and K.W. Jucks (2002), Kinetics of HO2 + HO2 → H2O2 + O2: Implications for Stratospheric H2O2, Geophys. Res. Lett., 29, 13-1-13-4, doi:10.1029/2001GL014525. TCP, UARP
Christensen, L.E., M. Okumura, S.P. Sander, R.R. Friedl, C.E. Miller, and J.J. Sloan (2004), Measurements of the Rate Constant of HO2 + NO2 + N2 f HO2NO2 + N2 Using Near-Infrared Wavelength-Modulation Spectroscopy and UV-Visible Absorption Spectroscopy, J. Phys. Chem. A, 108, 80-91, doi:10.1021/jp035905o. TCP, UARP
Christensen, L.E., M. Okumura, J.C. Hansen, S.P. Sander, and J.S. Francisco (2006), Experimental and ab Initio Study of the HO2‚CH3OH Complex: Thermodynamics and Kinetics of Formation†, J. Phys. Chem. A, 110, 6948-6959, doi:10.1021/jp056579a. TCP, UARP
Christensen, M.W., A. Gettelman, J. Cermak, G. Dagan, M. Diamond, A. Douglas, G. Feingold, F. Glassmeier, T. Goren, D.P. Grosvenor, E. Gryspeerdt, R. Kahn, Z. Li, P.-L. Ma, F. Malavelle, I.L. McCoy, D.T. McCoy, G. McFarquhar, J. Mülmenstädt, S. Pal, A. Possner, A. Povey, J. Quaas, D. Rosenfeld, A. Schmidt, R. Schrödner, A. Sorooshian, P. Stier, V. Toll, D. Watson-Parris, R. Wood, M. Yang, and T. Yuan (2022), Opportunistic experiments to constrain aerosol effective radiative forcing, Atmos. Chem. Phys., doi:10.5194/acp-22-641-2022. ACMAP
Christensen, M.W., A. Gettelman, J. Cermak, G. Dagan, M. Diamond, A. Douglas, G. Feingold, F. Glassmeier, T. Goren, D.P. Grosvenor, E. Gryspeerdt, R. Kahn, Z. Li, P.-L. Ma, F. Malavelle, I.L. McCoy, D.T. McCoy, G. McFarquhar, J. Mülmenstädt, S. Pal, A. Possner, A. Povey, J. Quaas, D. Rosenfeld, A. Schmidt, R. Schrödner, A. Sorooshian, P. Stier, V. Toll, D. Watson-Parris, R. Wood, M. Yang, and T. Yuan (2022), Opportunistic experiments to constrain aerosol effective radiative forcing, Atmos. Chem. Phys., doi:10.5194/acp-22-641-2022. RSP
Christian, K.E., W.H. Brune, J. Mao, and X. Ren (2018), Global sensitivity analysis of GEOS-Chem modeled ozone and hydrogen oxides during the INTEX campaigns, Atmos. Chem. Phys., 18, 2443-2460, doi:https://doi.org/10.5194/acp-18-2443-2018. ACMAP
Christian, K.E., W.H. Brune, and J. Mao (2017), Global sensitivity analysis of the GEOS-Chem chemical transport model: ozone and hydrogen oxides during ARCTAS (2008), Atmos. Chem. Phys., 17, 3769-3784, doi:10.5194/acp-17-3769-2017. ACMAP
Christian, K., J. Yorks, and S. Das (2024), Differences in the Evolution of Pyrocumulonimbus and Volcanic Stratospheric Plumes as Observed by CATS and CALIOP Space-Based Lidars, doi:10.3390/atmos11101035. Atmospheric Composition, RSP
Christiansen, A.E., A.G. Carlton, and B.H. Henderson (2020), Differences in fine particle chemical composition on clear and cloudy days, Atmos. Chem. Phys., 20, 11607-11624, doi:10.5194/acp-20-11607-2020. Atmospheric Composition