Pubs by Program

This page lists the publications in the ESD Publications database, sorted by first author and year. To filter the list, select one or more Research Program(s) to filter the list, or else specify a publication year (e.g., 2011). Options to view other pages of the list are provided at the bottom of the page.

Publication Citation Research Program(s)
Sproles, E.A., A. Mullen, J. Hendrikx, C. Gatebe, and S. Taylor (2020), Autonomous Aerial Vehicles (AAVs) as a Tool for Improving the Spatial Resolution of Snow Albedo Measurements in Mountainous Regions, doi:10.3390/hydrology7030041. THP, RSP
Spurr, R., J. Wang, J. Zeng, and M.I. Mishchenko (2012), Linearized T-matrix and Mie scattering computations, J. Quant. Spectrosc. Radiat. Transfer, 113, 425-439, doi:10.1016/j.jqsrt.2011.11.014. ACMAP, RSP
St. Clair, J.M., T.F. Hanisco, E.M. Weinstock, E.J. Moyer, D.S. Sayres, and J.G. Anderson (2008), A new photolysis laser-induced fluorescence instrument for the detection of H2O and HDO in the lower stratosphere, Review Of Scientific Instruments, 79, 64101, doi:10.1063/1.2940221. UARP
St. Clair, J.M., A.K. Swanson, S.A. Bailey, G.M. Wolfe, J.E. Marrero, L.T. Iraci, J.G. Hagopian, and T.F. Hanisco (2017), A new non-resonant laser-induced fluorescence instrument for the airborne in situ measurement of formaldehyde, Atmos. Meas. Tech., 10, 4833-4844, doi:10.5194/amt-10-4833-2017. UARP
St. Clair, J.M., A.K. Swanson, S.A. Bailey, and T.F. Hanisco (2019), CAFE: a new, improved nonresonant laser-induced fluorescence instrument for airborne in situ measurement of formaldehyde, Atmos. Meas. Tech., 12, 4581-4590, doi:10.5194/amt-12-4581-2019. TCP, UARP
Stachnik, R.A., L. Millán, R. Jarnot, R. Monroe, C. McLinden, K.J. Puk¸¯ıte, M. Shiotani, M. Suzuki, Y. Kasai, F. Goutail, J.P. Pommereau, M. Dorf, and K. Pfeilsticker (2013), Stratospheric BrO abundance measured by a balloon-borne submillimeterwave radiometer, Atmos. Chem. Phys., 13, 3307-3319, doi:10.5194/acp-13-3307-2013. UARP
Stackhouse, P.W., and G. Stephens (1991), A theoretical and observational study of the radiative properties of cirrus clouds: results from FIRE 1986, J. Atmos. Sci., 48, 2044-2059, doi:10.1175/1520-0469(1991)048<2044:ATAOSO>2.0.CO;2. RSP
Stackhouse, P.W., T. Wong, N.G. Loeb, D.P. Kratz, A.C. Wilber, D.R. Doelling, and L.T. Nguyen (2010), Earth Radiation Budget at Top-of-Atmosphere, Bull. Am. Meteorol. Soc., 91, S41. RSP
Stackhouse, P.W., T. Wong, D.P. Kratz, P. Sawaengphokhai, A.C. Wilber, S.K. Gupta, and N.G. Loeb (2013), Earth Radiation Budget at top-of-atmosphere [in &quot;State of the Climate in 2012”], Bull. Am. Meteorol. Soc., 94, S30-31. RSP
Stackhouse, P.W., T. Wong, D.P. Kratz, P. Sawaengphokai, A.C. Wilber, S.K. Gupta, and N.G. Loeb (2016), Earth Radiation Budget at Top-of-Atmosphere [in &quot;State of the Climate in 2015&quot;], Bull. Amer. Meteor. Soc., 97, S41-S43. RSP
Stahl, C., M.T. Cruz, P.A. Bañaga, G. Betito, R.A. Braun, M.A. Aghdam, and A. Sorooshian (2020), Sorooshian, A, Philippines. Scientific Data, 7, 128, doi:10.1038/s41597-020-0466-y. RSP
Stahl, C., M.T. Cruz, P.A. Bañaga, G. Betito, R.A. Braun, M.A. Aghdam, M.O. Cambaliza, G.R. Lorenzo, A.B. MacDonald, M.R.A. Hilario, P.C. Pabroa, J.R. Yee, J.B. Simpas, and A. Sorooshian (2020), Sources and characteristics of size-resolved particulate organic acids and methanesulfonate in a coastal megacity: Manila, Philippines, Atmos. Chem. Phys., 20, 15907-15935, doi:10.5194/acp-20-15907-2020. RSP
Stamnes, S., C. Hostetler, R. Ferrare, S. Burton, X. Liu, J. Hair, Y. Hu, A. Wasilewski, W. Martin, B. Van Diedenhoven, J. Chowdhary, I. Cetinić, L.K. Berg, K. Stamnes, and B. Cairns (2018), Simultaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the “MAPP” algorithm with comparison to high-spectral-resolution lidar aerosol and ocean products, Appl. Opt., 57, 2394-2413, doi:10.1364/AO.57.002394. RSP
Stanfield, R.E., X. Dong, B. Xi, A. Kennedy, A.D. Del Genio, P. Minnis, and J.H. Jiang (2014), Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations. Part I: Cloud Fraction and Properties, J. Climate, 27, 4189-4208, doi:10.1175/JCLI-D-13-00558.1. MAP, RSP
Stanfield, R.E., X. Dong, B. Xi, A.D. Del Genio, P. Minnis, D. Doelling, and N. Loeb (2015), Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations. Part II: TOA Radiation Budget and CREs, J. Climate, 28, 1842-1864, doi:10.1175/JCLI-D-14-00249.1. MAP, RSP
Stanton, J.F., and M. Okumura (2009), On the vibronic level structure in the NO3 radical Part III.w Observation of intensity borrowing via ground state mixing, PCCP, 2009, 4742-4744, doi:10.1039/b902252j. TCP, UARP
Star, T., S. LeBlanc, C.J. Flynn, Y. Shinozuka, M. Segal-Rozenhaimer, K. Pistone, M. Kacenelenbogen, J. Redemann, B. Schmid, P. Russell, J. Livingston, and Q. Zhang (2018), 4STAR_codes: 4STAR processing codes, Zenodo, doi:10.5281/zenodo.1492912. RSP
Stauffer, R.M., A.M. Thompson, and G.S. Young (2016), Tropospheric ozonesonde profiles at long-term U.S. monitoring sites: 1. A climatology based on self-organizing maps, J. Geophys. Res., 121, doi:10.1002/2015JD023641. UARP
Stauffer, R.M., A.M. Thompson, and J.C. Witte (2018), Characterizing Global Ozonesonde Profile Variability From Surface to the UT/LS With a Clustering Technique and MERRA-2 Reanalysis, J. Geophys. Res., 123, doi:10.1029/2018JD028465. UARP
Stauffer, R.M., A.M. Thompson, D.K. Martins, R.D. Clark, D.L. Goldberg, C.P. Loughner, R. Delgado, R.R. Dickerson, J.W. Stehr, and M.A. Tzortziou (2012), Bay breeze influence on surface ozone at Edgewood, MD during July 2011, J Atmos Chem, 72, 33, doi:10.1007/s10874-012-9241-6. TCP