Pubs by Program
This page lists the publications in the ESD Publications database, sorted by first author and year. To filter the list, select one or more Research Program(s) to filter the list, or else specify a publication year (e.g., 2011). Options to view other pages of the list are provided at the bottom of the page.
| Publication Citation | Research Program(s) |
|---|---|
| Khlopenkov, K.V., K.M. Bedka, J.W. Cooney, and K. Itterly (2022), Recent Advances in Detection of Overshooting Cloud Tops From Longwave Infrared Satellite Imagery, J. Geophys. Res.. | UARP |
| Kim, D., C. Cho, S. Jeong, S. Lee, B.A. Nault, P. Campuzano-Jost, D.A. Day, J.C. Schroder, J.L. Jimenez, R. Volkamer, D.R. Blake, A. Wisthaler, A. Fried, J.P. DiGangi, G.S. Diskin, S.E. Pusede, S.R. Hall, K. Ullmann, L.G. Huey, D.J. Tanner, J. Dibb, C.J. Knote, and K.-E. Min (2022), Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol, Atmos. Chem. Phys., doi:10.5194/acp-22-805-2022. | TCP |
| Kirschler, S., C. Voigt, B. Anderson, R.C. Braga, G. Chen, A.F. Corral, E. Crosbie, H. Dadashazar, R.A. Ferrare, V. Hahn, J. Hendricks, S. Kaufmann, R. Moore, M.L. Pöhlker, C. Robinson, A.J. Scarino, D. Schollmayer, M.A. Shook, K.L. Thornhill, E. Winstead, L.D. Ziemba, and A. Sorooshian (2022), Seasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic, Atmos. Chem. Phys., doi:10.5194/acp-22-8299-2022. | RSP |
| Konopka, P., M. Tao, F. Ploeger, D.F. Hurst, M.L. Santee, J.S. Wright, and M. Riese (2022), Stratospheric Moistening After 2000, Geophys. Res. Lett., 49, e2021GL097609, doi:10.1029/2021GL097609. | UARP |
| Kyba, C.C.M., M. Aubé, S. Bará, A. Bertolo, C.A. Bouroussis, S. Cavazzani, B.R. Espey, F. Falchi, G. Gyuk, A. Jechow, M. Kocifaj, Z. Kolláth, H. Lamphar, N. Levin, S. Liu, S.D. Miller, S. Ortolani, C.S.J. Pun, S.J. Ribas, T. Ruhtz, A.S. de Miguel, M. Schneider, R.M. Shrestha, A. Simoneau, C.W. So, T. Storch, K.P. Tong, M. Tuñón, D. Turnshek, K. Walczak, J. Wang, Z. Wang, and J. Zhang (2022), Multiple Angle Observations Would Benefit Visible Band Remote Sensing Using Night Lights, J. Geophys. Res., 274, 118979, doi:10.1016/j.atmosenv.2022.118979. | IDS, RSP |
| Langford, A.O., C.J. Senff, R.J. Alvarez, K.C. Aikin, S. Baidar, T.A. Bonin, W.A. Brewer, J. Brioude, S.S. Brown, J.D. Burley, D.J. Caputi, S.A. Conley, P.D. Cullis, Z.C.J. Decker, S. Evan, G. Kirgis, M. Lin, M. Pagowski, J. Peischl, I. Petropavlovskikh, R.B. Pierce, T.B. Ryerson, S.P. Sandberg, C.W. Sterling, A.M. Weickmann, and L. Zhang (2022), The Fires, Asian, and Stratospheric Transport–Las Vegas Ozone Study (FAST-LVOS), Atmos. Chem. Phys., doi:10.5194/acp-22-1707-2022. | TCP |
| Laughnera, J.L., J.L. Neub, D. Schimelb, P.O. Wennberga, K. Barsantid, K.W. Bowmanb, A. Chatterjeef, B.E. Croesh, H.L. Fitzmauricej, D.K. Henzek, J. Kimj, E.A. Kortl, Z. Lium, K. Miyazakib, A.J. Turnerb, S. Anenbergo, J. Avisep, H. Caok, D. Crispb, J. de Gouwi, A. Elderingb, J.C. Fyfer, D.L. Goldbergo, K.R. Gurneys, S. Hasheminassabt, F. Hopkinsu, C.E. Iveyd, D.B.A. Jonesv, and J. Liu (2022), Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2109481118. | Atmospheric Composition |
| Lawson, R.P., R. Bruintjes, S. Woods, and C. Gurganus (2022), Coalescence and Secondary Ice Development in Cumulus Congestus Clouds, J. Atmos. Sci., 79, 953-972, doi:10.1175/JAS-D-21-0188.1. | ACMAP |
| LeBlanc, S.E., M. Segal-Rozenhaimer, J. Redemann, C. Flynn, R.R. Johnson, S.E. Dunagan, R. Dahlgren, J. Kim, M. Choi, A. da Silva, P. Castellanos, Q. Tan, L. Ziemba, K.L. Thornhill, and M. Kacenelenbogen (2022), Airborne observations during KORUS-AQ show that aerosol optical depths are more spatially self-consistent than aerosol intensive properties, Atmos. Chem. Phys., doi:10.5194/acp-22-11275-2022. | Atmospheric Composition, TCP |
| Lee, H.-J., L.-S. Chang, D.A. Jaffe, J. Bak, X. Liu, G.G. Abad, H.-Y. Jo, Y.-J. Jo, J.-B. Lee, G.-H. Yang, J.-M. Kim, and C.-H. Kim (2022), Satellite-Based Diagnosis and Numerical Verification of Ozone Formation Regimes over Nine Megacities in East Asia, yujinjo@pusan.ac.kr (Y.-J.J.jm6449@naver.com (J.-M.K.) * Correspondence, chkim2@pusan.ac.kr, 1285, doi:10.3390/rs14051285. | Atmospheric Composition |
| Lee, Y.R., L.G. Huey, D.J. Tanner, M. Takeuchi, H. Qu, X. Liu, N.L. Ng, J.H. Crawford, A. Fried, D. Richter, I.J. Simpson, D.R. Blake, N.J. Blake, S. Meinardi, S. Kim, G.S. Diskin, J.P. Digangi, Y. Choi, S.E. Pusede, P.O. Wennberg, M.J. Kim, J.D. Crounse, A.P. Teng, R.C. Cohen, P.S. Romer, W. Brune, A. Wisthaler, T. Mikoviny, J.L. Jimenez, P. Campuzano-Jost, B.A. Nault, A. Weinheimer, and S.R.K.U. Hall (2022), An investigation of petrochemical emissions during KORUS-AQ: Ozone production, reactive nitrogen evolution, and aerosol production. Elementa: Science of the Anthropocene, 10, 00079-24, doi:10.1525/elementa.2022.00079. | TCP |
| Lemmouchi, F., J. Cuesta, M. Eremenko, C. Derognat, G. Siour, G. Dufour, P. Sellitto, S. Turquety, D. Tran, X. Liu, P. Zoogman, R. Lutz, and D. Loyola9 (2022), Article 1 Three-dimensional distribution of biomass burning aerosols 2 from Australian wildfires observed by TROPOMI satellite ob- 3 servations 4 5, Tel., 33, 82 39 20 64 21, doi:10.3390/xxxxx. | Atmospheric Composition |
| Li, C., J. Joiner, F. Liu, N.A. Krotkov, V. Fioletov, and C. McLinden (2022), A new machine-learning-based analysis for improving satellite-retrieved atmospheric composition data: OMI SO2 as an example, Atmos. Meas. Tech., 15, 5497-5514, doi:10.5194/amt-15-5497-2022. | Atmospheric Composition, ACMAP |
| Li, C., X. Xu, X. Liu, J. Wang, K. Sun, J. van Geffen, Q. Zhu, J. Ma, J. Jin, K. Qin, Q. He, P. Xie, B. Ren, and R.C. Cohen (2022), AAAS Journal of Remote Sensing Volume 2022, Article ID 9817134, 17 pages, Journal of Remote Sensing, 9817134, doi:10.34133/2022/9817134. | Atmospheric Composition |
| Li, C., M.S. Hammer, B. Zheng, and R.C. Cohen (2022), Accelerated reduction of air pollutants in China, 2017-2020, Science of the Total Environment, 803, 150011, doi:10.1016/j.scitotenv.2021.150011. | ACMAP |
| Li, C., X. Xu, X. Liu, J. Wang, K. Sun, J. van Geffen, Q. Zhu, J. Ma, J.K. Qin, Q. He, P. Xie, B. Ren, and R.C. Cohen (2022), Direct retrieval of NO2 vertical columns from UV-Vis (390-495 nm) spectral radiance using a neural network, Journal of Remote Sensing, ID, article, doi:10.34133/2022/9817134. | ACMAP |
| Li, F., and P.A. Newman (2022), Prescribing stratospheric chemistry overestimates southern hemisphere climate change during austral spring in response to quadrupled CO2, Clim. Dyn., 13, doi:10.1007/s00382-022-06588-4. | MAP, ACMAP |
| Li, J.1.✉., B.E. Carlson, Y.L. Yung, D. Lv, J. Hansen, J.E. Penner, H. Liao, V. Ramaswamy, R.A. Kahn, P. Zhang, O. Dubovik, A. Ding, A.A. Lacis, L. Zhang, and Y. Dong (2022), in the climate system REVIEwS, Nature, doi:10.1038/scattering. | ACMAP |
| Li, M., B.C. McDonald, S.A. McKeen, H. Eskes, P. Levelt, C. Francoeur, C. Harkins, J. He, M. Barth, D.K. Henze, M.M. Bela, M. Trainer, J.A. de Gouw, and G.J. Frost (2022), Assessment of Updated Fuel-Based Emissions Inventories Over the Contiguous United States Using TROPOMI NO2 Retrievals, J. Geophys. Res.. | Atmospheric Composition, ACMAP |
| Li, Q., R.P. Fernandez, R. Hossaini, F. Iglesias-Suarez, C.A. Cuevas, E.C. Apel, D.E. Kinnison, J.-F. Lamarque, and A. Saiz-Lopez (2022), Reactive halogens increase the global methane lifetime and radiative forcing in the 21st century, Nature, doi:10.1038/s41467-022-30456-8. | Atmospheric Composition, TCP |