Publication Citation
Anderson, J. C., et al. (2013), Long-term statistical assessment of Aqua-MODIS aerosol optical depth over coastal regions: bias characteristics and uncertainty sources, Tellus, 65, 20805.
Arola, A., et al. (2013), Influence of observed diurnal cycles of aerosol optical depth on aerosol direct radiative effect, Atmos. Chem. Phys., 13, 7895-7901, doi:10.5194/acp-13-7895-2013.
He, H., et al. (2019), Chemical climatology of atmospheric pollutants in the eastern United States: T Seasonal/diurnal cycles and contrast under clear/cloudy conditions for remote sensing, Atmos. Environ., 206, 85-107, doi:10.1016/j.atmosenv.2019.03.003.
Hou, W., et al. (2017), An algorithm for hyperspectral remote sensing of aerosols: 2. Information content analysis for aerosol parameters and principal components of surface spectra, J. Quant. Spectrosc. Radiat. Transfer, 192, 14-29, doi:10.1016/j.jqsrt.2017.01.041.
Judd, L., et al. (2018), The Dawn of Geostationary Air Quality Monitoring: Case Studies From Seoul and Los Angeles, Front. Environ. Sci., 6, 85, doi:10.3389/fenvs.2018.00085.
Judd, L., et al. (2019), Evaluating the impact of spatial resolution on tropospheric NO2 column comparisons within urban areas using high-resolution airborne data, Atmos. Meas. Tech., doi:10.5194/amt-2019-161.
Wang, J., et al. (2014), A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R, J. Quant. Spectrosc. Radiat. Transfer, 146, 510-528, doi:10.1016/j.jqsrt.2014.03.020.
Zoogman, P., et al. (2011), Ozone air quality measurement requirements for a geostationary satellite mission, Atmos. Environ., 45, 7143-7150, doi:10.1016/j.atmosenv.2011.05.058.