Publication Citation
Huang, Y., et al. (2012), The Structure of Low-Altitude Clouds over the Southern Ocean as Seen by CloudSat, J. Climate, 25, 2535-2546, doi:10.1175/JCLI-D-11-00131.1.
Huang, Y., et al. (2014), An Evaluation of WRF Simulations of Clouds over the Southern Ocean with A-Train Observations, Mon. Wea. Rev., 142, 647-667, doi:10.1175/MWR-D-13-00128.1.
Huang, Y., et al. (2015), A-Train Observations of Maritime Midlatitude Storm-Track Cloud Systems: Comparing the Southern Ocean against the North Atlantic, J. Climate, 28, 1920-1939, doi:10.1175/JCLI-D-14-00169.1.
Huang, Y., et al. (2015), Evaluation of boundary-layer cloud forecasts over the Southern Ocean in a limited-area numerical weather prediction system using in situ, space-borne and ground-based observations, Q. J. R. Meteorol. Soc., 141, 2259-2276, doi:10.1002/qj.2519.
Hudak, D., P. Rodriguez, and N. Donaldson (2008), Validation of the CloudSat precipitation occurrence algorithm using the Canadian C band radar network, J. Geophys. Res., 113, D00A07, doi:10.1029/2008JD009992.
Huo, J., and D. Lu (2014), Physical Properties of High-Level Cloud over Land and Ocean from CloudSat–CALIPSO Data, J. Climate, 27, 8966-8978, doi:10.1175/JCLI-D-14-00329.1.
Igel, M. (2016), TROPICAL DEEP CONVECTIVE CLOUD MORPHOLOGY Submitted by, PhD Dissertation, Department of Atmospheric Science, Colorado State University.
Igel, M., A. J. Drager, and S. van den Heever (2014), A CloudSat cloud object partitioning technique and assessment and integration of deep convective anvil sensitivities to sea surface temperature, J. Geophys. Res., 119, 10,515-10,535, doi:10.1002/2014JD021717.
Igel, M., and S. van den Heever (2015), Tropical, oceanic, deep convective cloud morphology as observed by CloudSat, Atmos. Chem. Phys. Discuss., 15, 15977-16017, doi:10.5194/acpd-15-15977-2015.
Igel, M., and S. van den Heever (2015), The relative influence of environmental characteristics on tropical deep convective morphology as observed by CloudSat, J. Geophys. Res., 120, 4304-4322, doi:10.1002/2014JD022690.
Illingworth, A. J., et al. (2015), The Earthcare Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation, Bull. Am. Meteorol. Soc., 1311-1332, doi:10.1175/BAMS-D-12-00227.1.
Im, E., C. Wu, and S. Durden (2005), Cloud Profiling Radar for the CloudSat Mission, IEEE Aerospace and Electronics Systems Magazine, 15-18.
Inoue, T., et al. (2010), Comparison of high‐level clouds represented in a global cloud system–resolving model with CALIPSO/CloudSat and geostationary satellite observations, J. Geophys. Res., 115, D00H22, doi:10.1029/2009JD012371.
Ishimoto, H., et al. (2014), One-dimensional variational (1D-Var) retrieval of middle to upper tropospheric humidity using AIRS radiance data, J. Geophys. Res., 119, 7633-7654, doi:10.1002/2014JD021706.
Islam, T., and P. K. Srivastava (2015), Synergistic multi-sensor and multi-frequency retrieval of cloud ice water path constrained by CloudSat collocations, J. Quant. Spectrosc. Radiat. Transfer, 161, 21-34, doi:10.1016/j.jqsrt.2015.03.022.
Iwasaki, S., et al. (2010), Characteristics of deep convection measured by using the A‐train constellation, J. Geophys. Res., 115, D06207, doi:10.1029/2009JD013000.
Iwasaki, S., et al. (2012), Mixtures of stratospheric and overshooting air measured using A-Train sensors, J. Geophys. Res., 117, D12207, doi:10.1029/2011JD017402.
Iwasaki, S., et al. (2015), Characteristics of cirrus clouds in the tropical lower stratosphere, Atmos. Res., 164–165, 358-368, doi:10.1016/j.atmosres.2015.06.009.
Jackson, G. S., B. T. Johnson, and S. J. Munchak (2013), Detection Thresholds of Falling Snow From Satellite-Borne Active and Passive Sensors, IEEE Trans. Geosci. Remote Sens., 51, 4177-4189, doi:10.1109/TGRS.2012.2227763.
Jameson, A. R., and A. J. Heymsfield (2014), Bayesian upscaling of aircraft ice measurements to two-dimensional domains for large-scale applications, Meteorol Atmos Phys, 123, 93-103.

Pages