Publication Citation
Christian, K., et al. (2019), Radiative Forcing and Stratospheric Warming of Pyrocumulonimbus Smoke Aerosols: First Modeling Results With Multisensor (EPIC, CALIPSO, and CATS) Views from Space, Geophys. Res. Lett., 46, 10,061-10,071, doi:10.1029/2019GL082360.
Hughes, E. J., et al. (2016), Using CATS near-real-time lidar observations to monitor and constrain volcanic sulfur dioxide (SO2) forecasts, Geophys. Res. Lett., 43, 11,089-11,097, doi:10.1002/2016GL070119.
Lee, L., et al. (2019), Investigation of CATS aerosol products and application toward global diurnal variation of aerosols, Atmos. Chem. Phys., 19, 12687-12707, doi:10.5194/acp-19-12687-2019.
McGill, M., and J. Yorks (2020), Observation and quantification of westerly outflow from southern Africa using spaceborne lidar, S Afr J Sci., 116, 6398-6404, doi:10.17159/sajs.2020/6398.
Noel, V., et al. (2018), The diurnal cycle of cloud profiles over land and ocean between 51◦ S and 51◦ N, seen by the CATS spaceborne lidar from the International Space Station, Atmos. Chem. Phys., 18, 9457-9473, doi:10.5194/acp-18-9457-2018.
Pauly, R., et al. (2019), Cloud-Aerosol Transport System (CATS) 1064 nm calibration and validation, Atmos. Meas. Tech., 12, 6241-6258, doi:10.5194/amt-12-6241-2019.
Proestakis, E., et al. (2019), EARLINET evaluation of the CATS Level 2 aerosol backscatter coefficient product, Atmos. Chem. Phys., 19, 11743-11764, doi:10.5194/acp-19-11743-2019.
Rajapakshe, C., et al. (2017), Seasonally transported aerosol layers over southeast Atlantic are closer to underlying clouds than previously reported, Geophys. Res. Lett., 44, 5818-5825, doi:10.1002/2017GL073559.
Yorks, J., et al. (2014), The Airborne Cloud–Aerosol Transport System: Overview and Description of the Instrument and Retrieval Algorithms, J. Atmos. Oceanic Technol., 31, 2482-2497, doi:10.1175/JTECH-D-14-00044.1.
Yorks, J., et al. (2016), An overview of the CATS level 1 processing algorithms and data products, Geophys. Res. Lett., 43, 4632-4639, doi:10.1002/2016GL068006.