Publication Citation
Devasthale, A., et al. (2016), A Decade Of Spaceborne Observations Of The Arctic Atmosphere: Novel Insights from NASA’s AIRS Instrument, Bull. Am. Meteorol. Soc., 97, 2163-2176, doi:10.1175/BAMS-D-14-00202.1.
Ding, F., et al. (2020), Assessing the Impacts of Two Averaging Methods on AIRS Level 3 Monthly Products and Multiyear Monthly Means, J. Atmos. Oceanic Technol., 37, 1027-1050, doi:10.1175/JTECH-D-19-0129.1.
Gahtan, J., and B. Tian (2022), Stratospheric Kelvin Wave Activity as a Function of Equivalent Depth in AIRS and Reanalysis Datasets, J. Geophys. Res., 127, e2021JD035572, doi:10.1029/2021jd035572.
Hearty, T. J., et al. (2014), Estimating sampling biases and measurement uncertainties of AIRS/AMSU-A temperature and water vapor observations using MERRA reanalysis, J. Geophys. Res., 119, 2725-2741, doi:10.1002/2013JD021205.
Huang, X., et al. (2014), A Global Climatology of Outgoing Longwave Spectral Cloud Radiative Effect and Associated Effective Cloud Properties, J. Climate, 27, 7475-7492, doi:10.1175/JCLI-D-13-00663.1.
Li, K., et al. (2010), Tropical mid-tropospheric CO2 variability driven by the Madden–Julian oscillation, Proc. Natl. Acad. Sci., 107, 19171-19175, doi:10.1073/pnas.1008222107.
Liang, C. K., et al. (2011), Record of tropical interannual variability of temperature and water vapor from a combined AIRS‐MLS data set, J. Geophys. Res., 116, D06103, doi:10.1029/2010JD014841.
Tian, B. (2015), Spread of model climate sensitivity linked to double-Intertropical Convergence Zone bias, Geophys. Res. Lett., 42, 4133-4141, doi:10.1002/2015GL064119.
Tian, B., and T. J. Hearty (2020), Estimating and removing the sampling biases of the AIRS Obs4MIPs V2 data, Earth and Space Science, 7, e2020EA001438, doi:10.1029/2020EA001438.
Tian, B., E. J. Fetzer, and E. M. Manning (2019), The Atmospheric Infrared Sounder Obs4MIPs version 2 data set., Earth and Space Science, 6, 324-333, doi:10.1029/2018EA000508.
Tian, B., et al. (2006), Vertical Moist Thermodynamic Structure and Spatial–Temporal Evolution of the MJO in AIRS Observations, J. Atmos. Sci., 63, 2462-2485.
Tian, B., et al. (2007), Intraseasonal variations of the tropical total ozone and their connection to the Madden-Julian Oscillation, Geophys. Res. Lett., 34, L08704, doi:10.1029/2007GL029451.
Tian, B., et al. (2010), Vertical Moist Thermodynamic Structure of the Madden–Julian Oscillation in Atmospheric Infrared Sounder Retrievals: An Update and a Comparison to ECMWF Interim Re-Analysis, Mon. Wea. Rev., 138, 4576-4582, doi:10.1175/2010MWR3486.1.
Waliser, D. E., et al. (2009), How well can satellite data characterize the water cycle of the Madden-Julian Oscillation?, Geophys. Res. Lett., 36, L21803, doi:10.1029/2009GL040005.
Wong, S., et al. (2011), The Apparent Water Vapor Sinks and Heat Sources Associated with the Intraseasonal Oscillation of the Indian Summer Monsoon, J. Climate, 24, 4466-4479, doi:10.1175/2011JCLI4076.1.
Zamora, L., and R. Kahn (2020), Saharan dust aerosols change deep convective cloud prevalence, possibly by inhibiting marine new particle formation, J. Climate, 33, 9467-9477, doi:10.1175/JCLI-D-20-0083.1.