Thomas F. Hanisco
Organization:
NASA Goddard Space Flight Center
First Author Publications:
- Hanisco, T. F., et al. (2019), ATom: L2 Measurements of In Situ Airborne Formaldehyde (ISAF), Ornl Daac, doi:10.3334/ORNLDAAC/1730.
- Hanisco, T. F., et al. (2007), Observations of deep convective influence on stratospheric water vapor and its isotopic composition, Geophys. Res. Lett., 34, L04814, doi:10.1029/2006GL027899.
- Hanisco, T. F., et al. (2002), In situ observations of HO2 and OH obtained on the NASA ER-2 in the high-ClO conditions of the 1999/2000 Arctic polar vortex, J. Geophys. Res., 107, 8283, doi:10.1029/2001JD001024.
- Hanisco, T. F., et al. (2002), Quantifying the rate of heterogeneous processing in the Arctic polar vortex with in situ observations of OH, J. Geophys. Res., 107, 8278, doi:10.1029/2000JD000425.
Co-Authored Publications:
- Gkatzelis, G., et al. (2024), Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., doi:10.5194/acp-24-929-2024.
- Gkatzelis, G., et al. (2024), Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., doi:10.5194/acp-24-929-2024.
- Gordon, A. E., et al. (2024), Stratospheric Hydration Processes in Tropopause‐Overshooting Convection Revealed by Tracer‐TracerCorrelations From the DCOTSS Field CampaignCameron R. Homeyer1, Usa, 71School of Meteorol, University of Oklahoma.
- Gordon, A., et al. (2024), Airborne observations of upper troposphere and lower stratosphere composition change in active convection producing above-anvil cirrus plumes, Atmos. Chem. Phys., doi:10.5194/acp-24-7591-2024.
- Cho, C., et al. (2023), a petrochemical industry and its volatile organic compounds (VOCs) emission rate, Elem Sci Anth, 9, doi:10.1525/elementa.2021.00015.
- Guo, H., et al. (2023), Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements – corrected, Atmos. Chem. Phys., 23, 99-117, doi:10.5194/acp-23-99-2023.
- Homeyer, C., et al. (2023), Extreme Altitudes of Stratospheric Hydration by Midlatitude Convection Observed During the DCOTSS Field Campaign, Geophys. Res. Lett..
- Rickly, P., et al. (2023), Emission factors and evolution of SO2 measured from biomass burning in wildfires and agricultural fires, Atmos. Chem. Phys., doi:10.5194/acp-22-15603-2022.
- Travis, K. R., et al. (2023), Emission Factors for Crop Residue and Prescribed Fires in the Eastern US during FIREX-AQ, J. Geophys. Res., 128, e2023JD039309, doi:10.1029/2023JD039309.
- Warneke, C., et al. (2023), Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ), J. Geophys. Res., 128, e2022JD037758, doi:10.1029/2022JD037758.
- Yates, E. L., et al. (2023), An extensive database of airborne trace gas and meteorological observations from the Alpha Jet Atmospheric eXperiment (AJAX), Earth Syst. Sci. Data, 15, 2375-2389, doi:10.5194/essd-15-2375-2023.
- Bourgeois, I., et al. (2022), Comparison of airborne measurements of NO, NO2, HONO, NOy , and CO during FIREX-AQ, Atmos. Meas. Tech., 15, 4901-4930, doi:10.5194/amt-15-4901-2022.
- Brune, W. H., et al. (2022), Observations of atmospheric oxidation and ozone production in South Korea, Atmos. Environ., 269, 118854, doi:10.1016/j.atmosenv.2021.118854.
- Cho, C., et al. (2022), a petrochemical industry and its volatile organic compounds (VOCs) emission rate, Elementa: Science of the Anthropocene, 9, doi:10.1525/elementa.2021.00015.
- Liao, J., et al. (2022), Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ), Atmos. Chem. Phys., doi:10.5194/acp-21-18319-2021.
- Liao, J., et al. (2022), Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ), Atmos. Chem. Phys., doi:10.5194/acp-21-18319-2021.
- Schwantes, R., et al. (2022), Evaluating the Impact of Chemical Complexity and Horizontal Resolution on Tropospheric Ozone Over the Conterminous US With a Global Variable Resolution Chemistry Model, J. Adv. Modeling Earth Syst., 14, e2021MS002889, doi:10.1029/2021MS002889.
- Stockwell, C. E., et al. (2022), Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires, Environ. Sci. Technol., 56, 7564-7577, doi:10.1021/acs.est.1c07121.
- Wolfe, G. M., et al. (2022), Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants, Atmos. Chem. Phys., doi:10.5194/acp-22-4253-2022.
- Xu, L., et al. (2022), Ozone chemistry in western U.S. wildfire plumes, Science Advances, 7, eabl3648, doi:10.1126/sciadv.abl3648.
- Xu, L., et al. (2022), Adv.7, eabl3648 (2021) 8 December 2021SCIENCE ADVANCES, Ozone chemistry in western U.S. wildfire plumes, Xu et al., Sci., 7, eabl3648, doi:10.1126/sciadv.abl3648.
- Zhao, T., et al. (2022), Source and variability of formaldehyde (HCHO) at northern high latitude: an integrated satellite, aircraft, and model study, Atmos. Chem. Phys., 22, 7163-7178, doi:10.5194/acp-22-7163-2022.
- Guo, H., et al. (2021), Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements, Atmos. Chem. Phys., 21, 13729-13746, doi:10.5194/acp-21-13729-2021.
- Liao, J., et al. (2021), Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ), Atmos. Chem. Phys., doi:10.5194/acp-21-18319-2021.
- Nault, B., et al. (2021), Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality, Atmos. Chem. Phys., 21, 11201-11224, doi:10.5194/acp-21-11201-2021.
- Thompson, C., et al. (2021), The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-20-0315.1.
- Brune, W. H., et al. (2020), Exploring Oxidation in the Remote Free Troposphere: Insights From Atmospheric Tomography (ATom), J. Geophys. Res., 125, doi:10.1029/2019JD031685.
- Cuchiara, G. C., et al. (2020), Vertical Transport, Entrainment, and Scavenging Processes Affecting Trace Gases in a Modeled and Observed SEAC4RS Case Study, J. Geophys. Res., 125, doi:10.1029/2019JD031957.
- Hannun, R. A., et al. (2020), Spatial heterogeneity in CO2, CH4, and energy fluxes: insights from airborne eddy covariance measurements over the Mid-Atlantic region, Environmental Research Letters., 15, 035008, doi:10.1088/1748-9326/ab7391.
- Hannun, R. A., et al. (2020), A cavity-enhanced ultraviolet absorption instrument for high-precision, fast-time-response ozone measurements, Atmos. Meas. Tech., 13, 6877-6887, doi:10.5194/amt-13-6877-2020.
- Nicely, J., et al. (2020), A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1, Atmos. Chem. Phys., 20, 1341-1361, doi:10.5194/acp-20-1341-2020.
- Thames, A., et al. (2020), Missing OH reactivity in the global marine boundary layer, Atmos. Chem. Phys., 20, 4013-4029, doi:10.5194/acp-20-4013-2020.
- Zhu, L., et al. (2020), Validation of satellite formaldehyde (HCHO) retrievals using observations from 12 aircraft campaigns, Atmos. Chem. Phys., 20, 12329-12345, doi:10.5194/acp-20-12329-2020.
- Liao, J., et al. (2019), Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance, Atmos. Chem. Phys., 19, 2765-2785, doi:10.5194/acp-19-2765-2019.
- St. Clair, J. M., et al. (2019), CAFE: a new, improved nonresonant laser-induced fluorescence instrument for airborne in situ measurement of formaldehyde, Atmos. Meas. Tech., 12, 4581-4590, doi:10.5194/amt-12-4581-2019.
- Wang, S., et al. (2019), Atmospheric Acetaldehyde: Importance of Air‐Sea Exchange and a Missing Source in the Remote Troposphere, Geophys. Res. Lett., 46, doi:10.1029/2019GL082034.
- Wolfe, G. M., et al. (2019), ATom: Column-Integrated Densities of Hydroxyl and Formaldehyde in Remote Troposphere, Ornl Daac, doi:10.3334/ORNLDAAC/1669.
- Wolfe, G. M., et al. (2019), Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1821661116.
- Brune, W. H., et al. (2018), Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study, Atmos. Chem. Phys., 18, 14493-14510, doi:10.5194/acp-18-14493-2018.
- Jaeglé, L., et al. (2018), Nitrogen Oxides Emissions, Chemistry, Deposition, and Export Over the Northeast United States During the WINTER Aircraft Campaign, J. Geophys. Res., 123, 12,368-12,393, doi:10.1029/2018JD029133.
- Li, J., et al. (2018), Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States, Atmos. Chem. Phys., 18, 2341-2361, doi:10.5194/acp-18-2341-2018.
- Wofsy, S. C., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, Ornl Daac, doi:10.3334/ORNLDAAC/1581.
- Wolfe, G. M., et al. (2018), The NASA Carbon Airborne Flux Experiment (CARAFE): instrumentation and methodology, Atmos. Meas. Tech., 11, 1757-1776, doi:10.5194/amt-11-1757-2018.
- Kahn, R., et al. (2017), SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses, Bull. Am. Meteoro. Soc., 2215-2228, doi:10.1175/BAMS-D-16-0003.1.
- Liu, X., et al. (2017), Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications, J. Geophys. Res., 122, 6108-6129, doi:10.1002/2016JD026315.
- Marvin, M. R., et al. (2017), Impact of evolving isoprene mechanisms on simulated formaldehyde: An inter-comparison supported by in situ observations from SENEX, Atmos. Environ., 164, 325-336, doi:10.1016/j.atmosenv.2017.05.049.
- St. Clair, J. M., et al. (2017), A new non-resonant laser-induced fluorescence instrument for the airborne in situ measurement of formaldehyde, Atmos. Meas. Tech., 10, 4833-4844, doi:10.5194/amt-10-4833-2017.
- Anderson, D., et al. (2016), A pervasive role for biomass burning in tropical high ozone/low water structures, Nature, doi:10.1038/ncomms10267.
- Fisher, J. A., et al. (2016), Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC4RS) and ground-based (SOAS) observations in the Southeast US, Atmos. Chem. Phys., 16, 5969-5991, doi:10.5194/acp-16-5969-2016.
- Liu, X., et al. (2016), Agricultural fires in the southeastern U.S. during SEAC4RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol, J. Geophys. Res., 121, 7383-7414, doi:10.1002/2016JD025040.
- Marais, E. A., et al. (2016), Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls, Atmos. Chem. Phys., 16, 1603-1618, doi:10.5194/acp-16-1603-2016.
- Wolfe, G. M., et al. (2016), Formaldehyde production from isoprene oxidation across NOx regimes, Atmos. Chem. Phys., 16, 2597-2610, doi:10.5194/acp-16-2597-2016.
- Cazorla, M., et al. (2015), A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere, Atmos. Meas. Tech., 8, 541-552, doi:10.5194/amt-8-541-2015.
- Wolfe, G. M., et al. (2015), Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations, Geophys. Res. Lett., 42, 8231-8240, doi:10.1002/2015GL065839.
- Gao, R., et al. (2014), OH in the tropical upper troposphere and its relationships to solar radiation and reactive nitrogen, J Atmos Chem, 71, 55-64.
- Thurlow, M. E., et al. (2014), The development and deployment of a ground-based, laser-induced fluorescence instrument for the in situ detection of iodine monoxide radicals, Rev. Sci. Instrum., 85, 44101, doi:10.1063/1.4869857.
- Sayres, D., et al. (2010), Influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere, J. Geophys. Res., 115, D00J20, doi:10.1029/2009JD013100.
- Sayres, D., et al. (2009), A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere, Review of Scientific Instruments, 80, 044102, doi:10.1063/1.3117349.
- Weinstock, E., et al. (2009), Validation of the Harvard Lyman-a in situ water vapor instrument: Implications for the mechanisms that control stratospheric water vapor, J. Geophys. Res., 114, D23301, doi:10.1029/2009JD012427.
- Wilmouth, D., et al. (2009), Chlorine-Catalyzed Ozone Destruction: Cl Atom Production from ClOOCl Photolysis, J. Phys. Chem. A, 113, 14099-14108, doi:10.1021/jp9053204.
- Jensen, E., et al. (2008), Formation of large ( 100 µm) ice crystals near the tropical tropopause, Atmos. Chem. Phys., 8, 1621-1633, doi:10.5194/acp-8-1621-2008.
- St. Clair, J. M., et al. (2008), A new photolysis laser-induced fluorescence instrument for the detection of H2O and HDO in the lower stratosphere, Review Of Scientific Instruments, 79, 64101, doi:10.1063/1.2940221.
- Dessler, A., T. F. Hanisco, and S. Fueglistaler (2007), Effects of convective ice lofting on H2O and HDO in the tropical tropopause layer, J. Geophys. Res., 112, D18309, doi:10.1029/2007JD008609.
- Co, D. T., et al. (2005), Rotationally Resolved Absorption Cross Sections of Formaldehyde in the 28100-28500 cm-1 (351-356 nm) Spectral Region: Implications for in Situ LIF Measurements, J. Phys. Chem. A, 109, 10675-10682, doi:10.1021/jp053466i.
- Lanzendorf, E. J., et al. (2001), Establishing the dependence of [HO2]/[OH] on temperature, halogen loading, O3, and Nox based on in situ measurements from the NASA ER-2, J. Phys. Chem. A, 105, 1535-1542.
- Perkins, K. K., et al. (2001), The Nox-HNO3 System in the lower stratosphere: Insights from in situ measurements and implications of the JHNO3-[OH] relationship, J. Phys. Chem. A, 105, 1521-1534.
- Voss, P. B., et al. (2001), Inorganic chlorine partitioning in the summer lower stratosphere: Modeled and measured [ClONO2]/[HCl] during POLARIS, Geophys. Res. Lett., 106, 1713-1732.
- Fahey, D., et al. (2000), Ozone destruction and production rates between spring and autumn in the Arctic stratosphere, Geophys. Res. Lett., 27:, 2605-2608.
- Drdla, K., et al. (1999), Microphysics and chemistry of sulfate aerosols at warm stratospheric temperatures, J. Geophys. Res., 104, 26737-26751.
- Gao, R., et al. (1999), A comparison of observations and model simulations of NOx/NOy in the lower stratosphere, Geophys. Res. Lett., 26, 1153-1156.
- Keim, E. R., et al. (1999), NOy partitioning from measurements of nitrogenand hydrogen radicals in the upper troposphere, Geophys. Res. Lett., 26, 51-54.
- Jaeglé, L., et al. (1997), Evolution and stoichiometry of heterogeneous processing in the Antarctic stratosphere, J. Geophys. Res., 102.D11, 13235-13253.
- Fahey, D., et al. (1995), Emission Measurements of the Concorde Supersonic Aircraft in the Lower Stratosphere, Science, 270, 070-74.
- Wennberg, P. O., et al. (1994), Aircraft-borne, Laser-Induced Fluorescence Instrument for the in situ detection of hydroxyl and hydroperoxyl radicals, Review of Scientific Instruments, 65, 1858-1876.