Steffen Freitag
Organization:
University of Hawaii
Co-Authored Publications:
- Redemann, J., et al. (2021), An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin, Atmos. Chem. Phys., 21, 1507-1563, doi:10.5194/acp-21-1507-2021.
- Cochrane, S., et al. (2020), The Dependence of Aerosol Radiative Effects on Spectral Aerosol Properties Derived from Aircraft Measurements: Results from the ORACLES 2016 and ORACLES 2017 Experiments, Atmos. Chem. Phys. (manuscript in preparation).
- Kacarab, M., et al. (2020), Biomass Burning Aerosol as a Modulator of Droplet Number in the Southeast Atlantic Region, Atmos. Chem. Phys., 20, 3029-3040, doi:10.5194/acp-20-3029-2020.
- LeBlanc, S., et al. (2020), Above-cloud aerosol optical depth from airborne observations in the southeast Atlantic, Atmos. Chem. Phys., 20, 1565-1590, doi:10.5194/acp-20-1565-2020.
- Redemann, J., et al. (2020), An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2020-449.
- Shinozuka, Y., et al. (2020), Daytime aerosol optical depth above low-level clouds is similar to that in adjacent clear skies at the same heights: airborne observation above the southeast Atlantic, Atmos. Chem. Phys., 20, 11275-11285, doi:10.5194/acp-20-11275-2020.
- Shinozuka, Y., et al. (2020), Daytime aerosol optical depth above low-level clouds is similar to that in adjacent clear skies at the same heights: airborne observation above the southeast Atlantic, Atmos. Chem. Phys., doi:10.5194/acp-2019-1007 (submitted).
- Cochrane, S., et al. (2019), Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments, Atmos. Meas. Tech., 12, 6505-6528, doi:10.5194/amt-12-6505-2019.
- Pistone, K., et al. (2019), Intercomparison of biomass burning aerosol optical properties from in situ and remote-sensing instruments in ORACLES-2016, Atmos. Chem. Phys., 19, 9181-9208, doi:10.5194/acp-19-9181-2019.
- shinozuka, et al. (2019), Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016, Atmos. Chem. Phys. Discuss., doi: https://doi.org/10.5194/acp-2019-678 (submitted).
- Diamond, M., et al. (2018), Time-dependent entrainment of smoke presents an observational challenge for assessing aerosol–cloud interactions over the southeast Atlantic Ocean, Atmos. Chem. Phys., 18, 14623-14636, doi:10.5194/acp-18-14623-2018.
- Howell, S., et al. (2014), An airborne assessment of atmospheric particulate emissions from the processing of Athabasca oil sands, Atmos. Chem. Phys., 14, 5073-5087, doi:10.5194/acp-14-5073-2014.
- Knobelspiesse, K., et al. (2011), Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar, Atmos. Chem. Phys., 11, 7045-7067, doi:10.5194/acp-11-7045-2011.
- McHaughton, C. S., et al. (2011), Absorbing aerosols in the troposphere of the Western Arctic during the 2008 ACTAS/ARCPAC airborne field campaigns, Atmos. Chem. Phys., 11, 7561-7582, doi:10.5194/acp-11-7515-2011.
- McNaughton, C. S., et al. (2011), Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns, Atmos. Chem. Phys., 11, 7561-7582, doi:10.5194/acp-11-7561-2011.
- Shinozuka, Y., et al. (2011), Airborne observation of aerosol optical depth during ARCTAS: vertical profiles, inter-comparison and fine-mode fraction, Atmos. Chem. Phys., 11, 3673-3688, doi:10.5194/acp-11-3673-2011.
- Koch, D., et al. (2009), Evaluation of black carbon estimations in global aerosol models, Atmos. Chem. Phys., 9, 9001-9026, doi:10.5194/acp-9-9001-2009.