Paul Newman
Organization:
NASA Goddard Space Flight Center
Email:
Business Address:
Code 614
Greenbelt, MD 20771
United StatesFirst Author Publications:
- Newman, P., et al. (2009), What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?, Atmos. Chem. Phys., 9, 2113-2128, doi:10.5194/acp-9-2113-2009.
- Newman, P., et al. (2002), An overview of the SOLVE/THESEO 2000 campaign, J. Geophys. Res., 107, 20.
- Newman, P., et al. (2001), Chance encounter with a stratospheric kerosene rocket plume from Russia over California, Geophys. Res. Lett., 28, 959-962.
- Newman, P., et al. (1996), Measurements of polar vortex air in the midlatitudes, J. Geophys. Res., 101, 12,879-12.
Co-Authored Publications:
- Fleming, E., et al. (2024), Stratospheric Temperature and Ozone Impacts of the Hunga Tonga-Hunga Ha'apai Water Vapor Injection, J. Geophys. Res., 129, e2023JD039298, doi:10.1029/2023JD039298.
- Pan, L. L., et al. (2024), East Asian summer monsoon delivers large abundances of very-short-lived organic chlorine substances to the lower stratosphere, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2318716121.
- Li, F., P. Newman, and D. Waugh (2023), Impacts of Stratospheric Ozone Recovery on Southern Ocean Temperature and Heat Budget, Geophys. Res. Lett..
- Fleming, E., et al. (2022), Stratospheric Impacts of Continuing CFC-11 Emissions Simulated in a Chemistry-Climate Model, J. Geophys. Res..
- Li, F., and P. Newman (2022), Prescribing stratospheric chemistry overestimates southern hemisphere climate change during austral spring in response to quadrupled CO2, Clim. Dyn., 13, doi:10.1007/s00382-022-06588-4.
- Carn, S. A., et al. (2021), Anticipating Climate Impacts of Major Volcanic Eruptions, Eos, 102, doi:10.1029/2021EO162730.
- Fleming, E., et al. (2021), Stratospheric Impacts of Continuing CFC-11 Emissions Simulated in a Chemistry-Climate Model, J. Geophys. Res., 126, e2020JD033656, doi:10.1029/2020JD033656.
- Gonzalez, Y., et al. (2021), Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom, Atmos. Chem. Phys., 21, 11113-11132, doi:10.5194/acp-21-11113-2021.
- Thompson, C., et al. (2021), The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-20-0315.1.
- Fleming, E., et al. (2020), The Impact of Continuing CFC‐11 Emissions on Stratospheric Ozone, J. Geophys. Res., 125, doi:10.1029/2019JD031849.
- Hannun, R. A., et al. (2020), Spatial heterogeneity in CO2, CH4, and energy fluxes: insights from airborne eddy covariance measurements over the Mid-Atlantic region, Environmental Research Letters., 15, 035008, doi:10.1088/1748-9326/ab7391.
- Li, F., and P. Newman (2020), Stratospheric water vapor feedback and its climate impacts in the coupled atmosphere-ocean Goddard Earth Observing System Chemistry‑Climate Model, Clim. Dyn., 13, 13, doi:10.1007/s00382-020-05348-6.
- Li, F., et al. (2018), Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960–2010, J. Geophys. Res., 123, doi:https://doi.org/10.1002/2017JD027562.
- Strode, S., et al. (2018), ATom: Observed and GEOS-5 Simulated CO Concentrations with Tagged Tracers for ATom-1, Ornl Daac, doi:10.3334/ORNLDAAC/1604.
- Strode, S., et al. (2018), Forecasting carbon monoxide on a global scale for the ATom-1 aircraft mission: insights from airborne and satellite observations and modeling, Atmos. Chem. Phys., 18, 10955-10971, doi:10.5194/acp-18-10955-2018.
- Wofsy, S. C., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, Ornl Daac, doi:10.3334/ORNLDAAC/1581.
- Wolfe, G. M., et al. (2018), The NASA Carbon Airborne Flux Experiment (CARAFE): instrumentation and methodology, Atmos. Meas. Tech., 11, 1757-1776, doi:10.5194/amt-11-1757-2018.
- Jensen, E., et al. (2017), The NASA Airborne Tropical TRopopause EXperiment (ATTREX): High-altitude aircraft measurements in the tropical western Pacific, Bull. Am. Meteorol. Soc., 12/2015, 129-144, doi:10.1175/BAMS-D-14-00263.1.
- Rollins, A., et al. (2017), The role of sulfur dioxide in stratospheric aerosol formation evaluated by using in situ measurements in the tropical lower stratosphere, Geophys. Res. Lett., 44, doi:10.1002/2017GL072754.
- Tweedy, O. V., et al. (2017), Response of trace gases to the disrupted 2015-2016 quasi-biennial oscillation, Atmos. Chem. Phys., 17, 6813-6823, doi:10.5194/acp-17-6813-2017.
- Li, F., et al. (2016), Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System, Version 5 (GEOS-5), J. Climate, 29, 3199-3218, doi:10.1175/JCLI-D-15-0572.1.
- Ziemke, J. R., et al. (2014), Assessment and applications of NASA ozone data products derived from Aura OMI/MLS satellite measurements in context of the GMI chemical transport model, J. Geophys. Res., 119, 5671-5699, doi:10.1002/2013JD020914.
- Hurwitz, M., et al. (2013), Net influence of an internally generated quasi-biennial oscillation on modelled stratospheric climate and chemistry, Atmos. Chem. Phys., 13, 12187-12197, doi:10.5194/acp-13-12187-2013.
- Hurwitz, M., et al. (2013), Sensitivity of the atmospheric response to warm pool El Niño events to modeled SSTs and future climate forcings, J. Geophys. Res., 118, 1-12, doi:10.1002/2013JD021051.
- Strahan, S., A. Douglass, and P. Newman (2013), The contributions of chemistry and transport to low arctic ozone in March 2011 derived from Aura MLS observations, J. Geophys. Res., 118, 1563-1576, doi:10.1002/jgrd.50181.
- Hurwitz, M., P. Newman, and C. I. Garfinkel (2012), On the influence of North Pacific sea surface temperature on the Arctic winter climate, J. Geophys. Res., 117, D19110, doi:10.1029/2012JD017819.
- Li, F., et al. (2012), Long-term changes in stratospheric age spectra in the 21st century in the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM), J. Geophys. Res., 117, D20119, doi:10.1029/2012JD017905.
- Li, F., et al. (2012), Seasonal variations of stratospheric age spectra in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM), J. Geophys. Res., 117, D05134, doi:10.1029/2011JD016877.
- Carlon, N. R., et al. (2010), UV absorption cross sections of nitrous oxide (N2O) and carbon tetrachloride (CCl4) between 210 and 350 K and the atmospheric implications, Atmos. Chem. Phys., 10, 6137-6149, doi:10.5194/acp-10-6137-2010.
- Pfister, L., et al. (2010), A meteorological overview of the TC4 mission, J. Geophys. Res., 115, D00J12, doi:10.1029/2009JD013316.
- Toon, B., et al. (2010), Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J04, doi:10.1029/2009JD013073.
- Kawa, S. R., et al. (2009), Sensitivity of polar stratospheric ozone loss to uncertainties in chemical reaction kinetics, Atmos. Chem. Phys., 9, 8651-8660, doi:10.5194/acp-9-8651-2009.
- Douglass, A., et al. (2008), Relationship of loss, mean age of air and the distribution of CFCs to stratospheric circulation and implications for atmospheric lifetimes, J. Geophys. Res., 113, D14309, doi:10.1029/2007JD009575.
- Waugh, D., S. Strahan, and P. Newman (2007), Sensitivity of stratospheric inorganic chlorine to differences in transport, Atmos. Chem. Phys., 7, 4935-4941, doi:10.5194/acp-7-4935-2007.
- Kawa, S. R., et al. (2005), Fall vortex ozone as a predictor of springtime total ozone at high northern latitudes, Atmos. Chem. Phys., 5, 1655-1663, doi:10.5194/acp-5-1655-2005.
- Greenblatt, J. B., et al. (2002), Defining the polar vortex edge from an N2O potential temperature correlation, J. Geophys. Res., 107, 8268, doi:10.1029/2001JD000575.
- Jost, H., et al. (2002), Mixing events revealed by anomalous tracer relationships in the Arctic vortex during winter 1999/2000, J. Geophys, Res., 107, 4795, doi:10.1029/2002JD002380.
- Gao, R., et al. (2001), Observational evidence for the role of denitrification in Arctic stratospheric ozone loss, Geophys. Res. Lett., 28, 2879-2882.
- Popp, P., et al. (2001), Severe and extensive denitrification in the 1999-2000 Arctic Winter Stratosphere, Geophys. Res. Lett., 28, 2875-2878.
- Voss, P. B., et al. (2001), Inorganic chlorine partitioning in the summer lower stratosphere: Modeled and measured [ClONO2]/[HCl] during POLARIS, Geophys. Res. Lett., 106, 1713-1732.
- Tabazadeh, A., et al. (2000), Quantifying denitrification and its effect on ozone recovery, Science, 288, 1407-1411.
- Gao, R., et al. (1999), A comparison of observations and model simulations of NOx/NOy in the lower stratosphere, Geophys. Res. Lett., 26, 1153-1156.
- Bacmeister, J., et al. (1996), Stratospheric horizontal wavenumber of winds, potential temperature and atmospheric tracers observed by high-altitude aircraft, J. Geophys. Res., 101, 9441-9470.
- Bacmeister, J., et al. (1994), An Algorithm for Forecasting Mountain Waves Related Turbulence in the Stratosphere, Weather and Forecast, 9, 214-253.
- Plumb, R. A., et al. (1994), Intrusions Into the Lower Stratospheric Arctic Vortex During the Winter of 1991-1992, J. Geophys. Res., 99.D1, 1089-1105.
- Waugh, D., et al. (1994), Fine-Scale Poleward Transport of Tropical Air During AASE 2, Geophys. Res. Lett., 21, 2603-2606.
- Waugh, D., et al. (1994), Transport out of the Lower Stratospheric Arctic Vortex by Rossby Wave Breaking, J. Geophys. Res., 99.D1, 1071-1088.
- Loewenstein, M., et al. (1993), New Observations of the NOy/N2O Correlation in the Lower Stratosphere, Geophys. Res. Lett., 20, 2531-2534, doi:10.1029/93GL03004.
- Russell, P. B., et al. (1993), Post-Pinatubo Optical Depth Spectra vs. Latitude, and Vortex Structure: Airborne Tracking Sunphotometer Measurements in AASE II, Geophys. Res. Lett., 20, 2571-2574.
- Salawitch, R., et al. (1993), Chemical Loss of Ozone in the Arctic Polar Vortex in the Winter of 1991-1992, Science, 261, 1146-1149.
- Toon, B., et al. (1993), Heterogeneous Reaction Probabilities, Solubilities, and the Physical State of Cold Volcanic Aerosols, Science, 261, 1136-1140.
- Webster, C. R., et al. (1993), Chlorine chemistry on polar stratospheric cloud particles in the Arctic winter, Science, 261, 1140-1143.
- Lait, L. R., et al. (1990), Reconstruction of O3 and N2O fields from ER-2, DC-8, and Balloon Observations, Geophys. Res. Lett., 17, 521-524.
- Rood, R. B., et al. (1990), Stratospheric Temperatures During AASE: Results from STRATAN, Geophys. Res. Lett., 17, 337-340.
- Salawitch, R., et al. (1990), Loss of Ozone in the Polar Vortex for the Winter of 1989, Geophys. Res. Lett., 17, 561-164.
- Schoeberl, M. R., et al. (1990), Stratospheric Constituent Trends from ER-2 Profile Data, Geophys. Res. Lett., 17, 469-472.
- Hartmann, et al. (1989), Potential Vorticity Estimates in the South Polar Vortex from ER-2 Data, J. Geophys. Res., 94, 11,625-11.
- Schoeberl, M. R., et al. (1989), Reconstruction of the Constituent Distribution and Trends in the Antarctic Polar Vortex from the ER-2 Flight Observation, J. Geophys. Res., 94, 16,815-16.