Organization
NASA Ames Research Center
Email
Business Phone
Work
(650) 604-3183
Mobile
(408) 394-1880
Fax
(650) 604-3625
Business Address
Earth Sciences Division
MS 245-5
Moffett Field, CA 94035-1000
United States
Website
First Author Publications
-
Pfister, L., et al. (2022), Deep Convective Cloud Top Altitudes at High Temporal and Spatial Resolution, Earth and Space, 1, 22.
-
Pfister, L., et al. (2010), A meteorological overview of the TC4 mission, J. Geophys. Res., 115, D00J12, doi:10.1029/2009JD013316.
-
Pfister, L., et al. (2003), Processes controlling water vapor in the winter Arctic tropopause region, J. Geophys. Res., 108, 8314, doi:10.1029/2001JD001067.
-
Pfister, L., et al. (2001), Aircraft observations of thin cirrus clouds near the Tropical Tropopause, J. Geophys. Res., 106, 9765-9786.
-
Pfister, L., et al. (1993), Mesoscale Disburbances in the Tropical Stratosphere Excited by Convection: Observations and Effects on the Stratospheric Momentum Budget, J. Atmos. Sci., 50, 1058-1075.
-
Pfister, L., et al. (1993), Gravity Waves Generated by a Tropical Cyclone During the STEP Tropical Field Program: A Case Study, J. Geophys. Res., 98, 8611-8638.
-
Pfister, L., and P.B. Russell (1993), Preface to the JGR Special Section on ‘The NASA Stratosphere-Troposphere Exchange Project: Tropical Field Experiment (STEP), J. Geophys. Res., 98, 8562.
-
Pfister, L., et al. (1991), Preface to 'Special Section: The NASA Stratosphere-Troposphere Exchange Project (STEP) Mid-Latitude Field Experiment.', J. Geophys. Res., 96, 17,400.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Ryoo, J., et al. (2023), A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 2 – Daily and synoptic characteristics, Atmos. Chem. Phys., doi:10.5194/acp-22-14209-2022.
-
Ueyama, R., et al. (2023), Convective Impact on the Global Lower Stratospheric Water Vapor Budget, J. Geophys. Res., 128, e2022JD037135, doi:10.1029/2022JD037135.
-
Schoeberl, M.R., et al. (2022), A Lagrangian View of Seasonal Stratosphere-Troposphere Exchange, J. Geophys. Res., 127, e2022JD036772, doi:10.1029/2022JD036772.
-
Smith, W.P., et al. (2022), Diagnostics of Convective Transport Over the Tropical Western Pacific From Trajectory Analyses, J. Geophys. Res..
-
Treadaway, V., et al. (2022), Long-range transport of Asian emissions to the West Pacific tropical tropopause layer, J Atmos Chem, 79, 81-100, doi:10.1007/s10874-022-09430-7.
-
Pistone, K., et al. (2021), Exploring the elevated water vapor signal associated with the free-tropospheric biomass burning plume over the southeast Atlantic Ocean, Atmos. Chem. Phys.(submitted), doi:10.5194/acp-2020-1322.
-
Pistone, K., et al. (2021), Exploring the elevated water vapor signal associated with the free tropospheric biomass burning plume over the southeast Atlantic Ocean, Atmos. Chem. Phys., 21, 9643-9668, doi:10.5194/acp-21-9643-2021.
-
Ryoo, J., et al. (2021), A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 1 – Climatology, Atmos. Chem. Phys., 21, 16689-16707, doi:10.5194/acp-21-16689-2021.
-
Shinozuka, Y., et al. (2020), Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016, Atmos. Chem. Phys., 20, 11491-11526, doi:10.5194/acp-20-11491-2020.
-
Ueyama, R., et al. (2020), Impact of Convectively Detrained Ice Crystals on the Humidity of the Tropical Tropopause Layer in Boreal Winter, J. Geophys. Res., 125, 1-17, doi:10.1029/2020JD032894.
-
Schoeberl, M.R., et al. (2019), Water Vapor, Clouds, and Saturation in the Tropical Tropopause Layer, J. Geophys. Res., 124, doi:10.1029/2018JD029849.
-
Ueyama, R., et al. (2018), Convective Influence on the Humidity and Clouds in the Tropical Tropopause Layer During Boreal Summer, J. Geophys. Res., 123.
-
Woods, S., et al. (2018), Microphysical Properties of Tropical Tropopause Layer Cirrus, J. Geophys. Res., 123, doi:.org/.
-
Jensen, E., et al. (2017), The NASA Airborne Tropical TRopopause EXperiment (ATTREX): High-altitude aircraft measurements in the tropical western Pacific, Bull. Am. Meteorol. Soc., 12/2015, 129-144, doi:10.1175/BAMS-D-14-00263.1.
-
Anderson, D., et al. (2016), A pervasive role for biomass burning in tropical high ozone/low water structures, Nature, doi:10.1038/ncomms10267.
-
Jensen, E., et al. (2016), High-frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus, Geophys. Res. Lett., 43, 6629-6635, doi:10.1002/2016GL069426.
-
Kim, J., et al. (2016), Ubiquitous influence of waves on tropical high cirrus clouds, Geophys. Res. Lett., 43, 5895-5901, doi:10.1002/2016GL069293.
-
Toon, B., et al. (2016), Planning, implementation, and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission, J. Geophys. Res., 121, 4967-5009, doi:10.1002/2015JD024297.
-
Jensen, E., et al. (2015), Investigation of the transport processes controlling the geographic distribution of carbon monoxide at the tropical tropopause, J. Geophys. Res., 120, 2067-2086, doi:10.1002/2014JD022661.
-
Ueyama, R., et al. (2015), Dynamical, convective, and microphysical control on wintertime distributions of water vapor and clouds in the tropical tropopause layer, J. Geophys. Res., 120, 10,483-10,500, doi:10.1002/2015JD023318.
-
Bergman, J., et al. (2014), Analyzing dynamical curculations in the tropical tropopause layer through empirical predictions of cirrus cloud distributions, J. Geophys. Res., 119, 2831-2845, doi:10.1002/2013JD021295.
-
Ueyama, R., et al. (2014), Dehydration in the tropical tropopause layer: A case study for model evaluation using aircraft observations, J. Geophys. Res., 119, 5299-5316, doi:10.1002/2013JD021381.
-
Jensen, E., et al. (2013), Physical processes controlling ice concentrations in synoptically-forced, J. Geophys. Res., 118, 5348-5360, doi:10.1002/jgrd.50421.
-
Jensen, E., et al. (2013), Ice nucleation and dehydration in the Tropical Tropopause Layer, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1217104110.
-
Bergman, J., et al. (2012), Seasonal differences of vertical-transport efficiency in the tropical tropopause layer: On the interplay between tropical deep convection, large-scale vertical ascent, and horizontal circulations, J. Geophys. Res., 117, D05302, doi:10.1029/2011JD016992.
-
Jensen, E., et al. (2012), Physical processes controlling ice concentrations in cold cirrus near the tropical tropopause, J. Geophys. Res., 117, D11205, doi:10.1029/2011JD017319.
-
Jensen, E., et al. (2011), Impact of radiative heating, wind shear, temperature variability, and microphysical processes on the structure and evolution of thin cirrus in the tropical tropopause layer, J. Geophys. Res., 116, D12209, doi:10.1029/2010JD015417.
-
Jensen, E., et al. (2010), Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus, Atmos. Chem. Phys., 10, 1369-1384, doi:10.5194/acp-10-1369-2010.
-
Park, S., et al. (2010), Vertical transport rates and concentrations of OH and Cl radicals in the Tropical Tropopause Layer from observations of CO2 and halocarbons: implications for distributions of long- and short-lived chemical species, Atmos. Chem. Phys., 10, 6669-6684, doi:10.5194/acp-10-6669-2010.
-
Petropavlovskikh, I., et al. (2010), Low‐ozone bubbles observed in the tropical tropopause layer during the TC4 campaign in 2007, J. Geophys. Res., 115, D00J16, doi:10.1029/2009JD012804.
-
Sayres, D., et al. (2010), Influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere, J. Geophys. Res., 115, D00J20, doi:10.1029/2009JD013100.
-
Selkirk, H., et al. (2010), Detailed structure of the tropical upper troposphere and lower stratosphere as revealed by balloon sonde observations of water vapor, ozone, temperature, and winds during the NASA TCSP and TC4 campaigns, J. Geophys. Res., 115, D00J19, doi:10.1029/2009JD013209.
-
Toon, B., et al. (2010), Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J04, doi:10.1029/2009JD013073.
-
Froyd, K., et al. (2009), Aerosol composition of the tropical upper troposphere, Atmos. Chem. Phys., 9, 4363-4385, doi:10.5194/acp-9-4363-2009.
-
Choi, Y., et al. (2008), Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX-NA, J. Geophys. Res., 113, D07301.
-
Jensen, E., et al. (2008), Formation of large ( 100 µm) ice crystals near the tropical tropopause, Atmos. Chem. Phys., 8, 1621-1633, doi:10.5194/acp-8-1621-2008.
-
Lawson, P., et al. (2008), Microphysical Properties of subvisible cirrus, Atmos. Chem. Phys., 8, 1609-1620.
-
Lawson, P., et al. (2008), Aircraft measurements of microphysical properties of subvisible cirrus in the tropical tropopause layer, Atmos. Chem. Phys., 8, 1609-1620.
-
Schwarz, J., et al. (2008), Coatings and their enhancement of black carbon light absorption in the tropical atmosphere, J. Geophys. Res., 113, D03203, doi:10.1029/2007JD009042.
-
Park, S., et al. (2007), The CO2 tracer clock for the Tropical Tropopause Layer, Atmos. Chem. Phys., 7, 3989-4000, doi:10.5194/acp-7-3989-2007.
-
Weinstock, E., et al. (2007), Quantifying the impact of the North American monsoon and deep midlatitude convection on the subtropical lowermost stratosphere using in situ measurements, J. Geophys. Res., 112, D18310, doi:10.1029/2007JD008554.
-
Jensen, E., et al. (2005), Ice supersaturations exceeding 100% at the cold tropical tropopause: implications for cirrus formation and dehydration, Atmos. Chem. Phys., 5, 851-862, doi:10.5194/acp-5-851-2005.
-
Jensen, E., and L. Pfister (2004), Transport and freeze-drying in the tropical tropopause layer, J. Geophys. Res., 109, doi:10.1029/2003JD004022.
-
Jost, H., et al. (2004), In-situ observations of mid-latitude forest fire plumes deep in the stratosphere, Geophys. Res. Lett., 31, L11101, doi:10.1029/2003GL019253.
-
Jensen, E., et al. (2001), A conceptual model of the dehydration of air due to freeze-drying by optically thin, laminar cirrus rising slowly across the tropical tropopause, J. Geophys. Res., 106, 17237-17252, doi:10.1029/2000JD900649.
-
Alexander, M.J., et al. (2000), Tropical stratospheric gravity wave activity and relationships to clouds, J. Geophys. Res., 105, 22,299-22.
-
Jensen, E., et al. (1999), High humidities and subvisible cirrus near the tropical tropopause, Geophys. Res. Lett., 26, 2347-2350.
-
Jensen, E., et al. (1996), Dehydration of the upper troposphere and lower stratosphere by subvisible cirrus clouds near the tropical tropopause, Geophys. Res. Lett., 23, 825-828.
-
Jaeglé, L., et al. (1994), In Situ Measurements of the NO2/NO Ratio For Testing Atmospheric Photochemical Models, Geophys. Res. Lett., 21, 2555-2558.
-
Salawitch, R., et al. (1994), The Diurnal Variation of Hydrogen, Nitrogen, and Chlorine Radicals: Implications for the Heterogeneous Production of HNO2, Geophys. Res. Lett., 21, 2551-2554.
-
Salawitch, R., et al. (1994), The Distribution of Hydrogen, Nitrogen, and Chlorine Radicals in the Lower Stratosphere: Implications for Changes in O3 Due to Emission of NOy from Supersonic Aircraft, Geophys. Res. Lett., 21, 2547-2550.
-
Stimpfle, R., et al. (1994), The Response of ClO Radical Concentrations to Variations in NO2 Radical Concentrations in the Lower Stratosphere, Geophys. Res. Lett., 21, 2543-2546.
-
Young, R.E., et al. (1994), Characteristics of Finite Amplitude Stationary Gravity Waves in the Atmosphere of Venus, J. Atmos. Sci., 51, 1857-1875.
-
Russell, P.B., et al. (1993), Post-Pinatubo Optical Depth Spectra vs. Latitude, and Vortex Structure: Airborne Tracking Sunphotometer Measurements in AASE II, Geophys. Res. Lett., 20, 2571-2574.
-
Russell, P.B., et al. (1993), The Tropical Experiment of the Stratosphere-Troposphere Exchange Project (STEP): Science Objectives, Operations, and Summary Findings, J. Geophys. Res., 98, 8563-8589.
-
Chan, R., et al. (1992), "A Case Study of the Mountain Lee Wave Event of January 6, Geophys. Res. Lett., 20, 2551-2554.
-
Chan, R., et al. (1991), Horizontal Wind Fluctuations in the Stratosphere During Large Scale Cyclogenesis, J. Geophys. Res., 96, 17,425-17.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.