J. Vanderlei Martins
Organization:
University of Maryland, Baltimore County
First Author Publications:
- Martins, J. V., et al. (2011), Remote sensing the vertical profile of cloud droplet effective radius, thermodynamic phase, and temperature, Atmos. Chem. Phys., 11, 9485-9501, doi:10.5194/acp-11-9485-2011.
Co-Authored Publications:
- McNeill, J., et al. (2022), OPEN Large global variations in measured airborne metal concentrations driven by anthropogenic sources, Nature, doi:10.1038/s41598-020-78789-y.
- Jamet, C., et al. (2019), Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry, Front. Mar. Sci., 6, 251, doi:10.3389/fmars.2019.00251.
- Remer, L., et al. (2019), Retrieving Aerosol Characteristics From the PACE Mission, Part 1: Ocean Color Instrument, Ocean Color Instrument. Front. Earth Sci., 7, 152, doi:10.3389/feart.2019.00152.
- Remer, L., et al. (2019), Retrieving Aerosol Characteristics From the PACE Mission, Part 2: Multi-Angle and Polarimetry, Multi-Angle and Polarimetry. Front. Environ. Sci., 7, 94, doi:10.3389/fenvs.2019.00094.
- Schuster, G., et al. (2019), A Laboratory Experiment for the Statistical Evaluation of Aerosol Retrieval (STEAR) Algorithms, Remote Sensing, 11, doi:10.3390/rs11050498.
- Xu, R., et al. (2019), Detecting layer height of smoke aerosols over vegetated land and water surfaces via oxygen absorption bands: hourly results from EPIC/DSCOVR in deep space, Atmos. Meas. Tech., 12, 3269-3288, doi:10.5194/amt-12-3269-2019.
- Rocha-Lima, A., et al. (2018), A detailed characterization of the Saharan dust collected during the Fennec campaign in 2011: in situ ground-based and laboratory measurements, Atmos. Chem. Phys., 18, 1023-1043, doi:10.5194/acp-18-1023-2018.
- Espinosa, W. R., et al. (2017), Retrievals of aerosol optical and microphysical properties from Imaging Polar Nephelometer scattering measurements, Atmos. Meas. Tech., 10, 811-824, doi:10.5194/amt-10-811-2017.
- Kahn, R., et al. (2017), SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses, Bull. Am. Meteoro. Soc., 2215-2228, doi:10.1175/BAMS-D-16-0003.1.
- Lee, S., et al. (2014), Effect of gradients in biomass burning aerosol onshallow cumulus convective circulations, J. Geophys. Res., 119, doi:10.1002/.
- Zhu, L., J. V. Martins, and H. Yu (2012), Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and aerosol direct radiative forcing, Atmos. Meas. Tech., 5, 3055-3067, doi:10.5194/amt-5-3055-2012.
- Remer, L., et al. (2008), Global aerosol climatology from the MODIS satellite sensors, J. Geophys. Res., 113, D14S07, doi:10.1029/2007JD009661.
- Zinner, T., et al. (2008), Remote sensing of cloud sides of deep convection: towards a three-dimensional retrieval of cloud particle size profiles, Atmos. Chem. Phys., 8, 4741-4757, doi:10.5194/acp-8-4741-2008.
- Marshak, A., et al. (2006), What does reflection from cloud sides tell us about vertical distribution of cloud droplet sizes?, Atmos. Chem. Phys., 6, 5295-5305, doi:10.5194/acp-6-5295-2006.
- Castanho, A. D. D., et al. (2005), Chemical Characterization of Aerosols on the East Coast of the United States Using Aircraft and Ground-Based Stations during the CLAMS Experiment, J. Atmos. Sci., 62, 934-946.
- Levy, R., et al. (2005), Evaluation of the MODIS Aerosol Retrievals over Ocean and Land during CLAMS, J. Atmos. Sci., 62, 974-992.