Eric Jensen
Organization:
National Center for Atmospheric Research
Email:
Business Phone:
Mobile:
(303) 704-3039
Business Address:
3450 Mitchell Lane
Boulder, CO 80301
United StatesFirst Author Publications:
- Jensen, E., et al. (2024), The Impact of Gravity Waves on the Evolution of Tropical Anvil Cirrus Microphysical Properties, J. Geophys. Res..
- Jensen, E., et al. (2020), Assessment of Observational Evidence for Direct Convective Hydration of the Lower Stratosphere, J. Geophys. Res., 125, e2020JD032793, doi:10.1029/2020JD032793.
- Jensen, E., et al. (2018), Heterogeneous ice nucleation in the tropical tropopause layer, J. Geophys. Res., doi:10.1029/2018JD028949.
- Jensen, E., S. van den Heever, and L. D. Grant (2018), The Life Cycles of Ice Crystals Detrained From the Tops of Deep Convection, J. Geophys. Res., 123, 9624-9634, doi:10.1029/2018JD028832.
- Jensen, E., et al. (2017), The NASA Airborne Tropical TRopopause EXperiment (ATTREX): High-altitude aircraft measurements in the tropical western Pacific, Bull. Am. Meteorol. Soc., 12/2015, 129-144, doi:10.1175/BAMS-D-14-00263.1.
- Jensen, E., et al. (2017), Physical processes controlling the spatial distributions of relative humidity in the tropical tropopause layer over the Pacific, J. Geophys. Res., 122, 6094-6107, doi:10.1002/2017JD026632.
- Jensen, E., et al. (2016), High-frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus, Geophys. Res. Lett., 43, 6629-6635, doi:10.1002/2016GL069426.
- Jensen, E., et al. (2016), On the Susceptibility of Cold Tropical Cirrus to Ice Nuclei Abundance, J. Atmos. Sci., 73, 2445-2464, doi:10.1175/JAS-D-15-0274.1.
- Jensen, E., et al. (2015), Investigation of the transport processes controlling the geographic distribution of carbon monoxide at the tropical tropopause, J. Geophys. Res., 120, 2067-2086, doi:10.1002/2014JD022661.
- Jensen, E., et al. (2013), Ice nucleation and dehydration in the Tropical Tropopause Layer, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1217104110.
- Jensen, E., et al. (2013), Physical processes controlling ice concentrations in synoptically-forced, J. Geophys. Res., 118, 5348-5360, doi:10.1002/jgrd.50421.
- Jensen, E., L. Pfister, and T. P. Bui (2012), Physical processes controlling ice concentrations in cold cirrus near the tropical tropopause, J. Geophys. Res., 117, D11205, doi:10.1029/2011JD017319.
- Jensen, E., L. Pfister, and B. Toon (2011), Impact of radiative heating, wind shear, temperature variability, and microphysical processes on the structure and evolution of thin cirrus in the tropical tropopause layer, J. Geophys. Res., 116, D12209, doi:10.1029/2010JD015417.
- Jensen, E., et al. (2010), Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus, Atmos. Chem. Phys., 10, 1369-1384, doi:10.5194/acp-10-1369-2010.
- Jensen, E., et al. (2009), On the importance of small ice crystals in tropical anvil cirrus, Atmos. Chem. Phys. Discuss., 9, 5321-5370.
- Jensen, E., et al. (2008), Formation of large ( 100 µm) ice crystals near the tropical tropopause, Atmos. Chem. Phys., 8, 1621-1633, doi:10.5194/acp-8-1621-2008.
- Jensen, E., A. S. Ackerman, and J. A. Smith (2007), Can overshooting convection dehydrate the tropical tropopause layer?, J. Geophys. Res., 112, D11209, doi:10.1029/2006JD007943.
- Jensen, E., and A. S. Ackerman (2006), Homogeneous aerosol freezing in the tops of high-altitude tropical cumulonimbus clouds, Geophys. Res. Lett., 33, L08802, doi:10.1029/2005GL024928.
- Jensen, E., et al. (2005), Formation of a Tropopause Cirrus Layer Observed over Florida during CRYSTAL-FACE, J. Geophys. Res., 110, 2005, doi:10.1029/2004JD004671.
- Jensen, E., et al. (2005), Ice supersaturations exceeding 100% at the cold tropical tropopause: implications for cirrus formation and dehydration, Atmos. Chem. Phys., 5, 851-862, doi:10.5194/acp-5-851-2005.
- Jensen, E., and L. Pfister (2004), Transport and freeze-drying in the tropical tropopause layer, J. Geophys. Res., 109, doi:10.1029/2003JD004022.
- Jensen, E., and K. Drdla (2002), Nitric acid concentrations near the tropical tropopause: Implications for the properties of tropical nitric acid trihydrate clouds, Geophys. Res. Lett., 29, 2001, doi:10.1029/2002GL015190.
- Jensen, E., et al. (2002), Impact of polar stratospheric cloud particle composition, number density, and lifetime on denitrification, J. Geophys. Res., 107, 8284, doi:10.1029/2001JD000440.
- Jensen, E., et al. (2001), A conceptual model of the dehydration of air due to freeze-drying by optically thin, laminar cirrus rising slowly across the tropical tropopause, J. Geophys. Res., 106, 17237-17252, doi:10.1029/2000JD900649.
- Jensen, E., et al. (1999), High humidities and subvisible cirrus near the tropical tropopause, Geophys. Res. Lett., 26, 2347-2350.
- Jensen, E., and B. Toon (1997), The potential impact of soot particles from aircraft exhaust on cirrus clouds, Geophys. Res. Lett., 24, 249-252.
- Jensen, E., et al. (1996), Dehydration of the upper troposphere and lower stratosphere by subvisible cirrus clouds near the tropical tropopause, Geophys. Res. Lett., 23, 825-828.
- Jensen, E., et al. (1996), On the formation and persistence of subvisible cirrus clouds near the tropical tropopause, J. Geophys. Res., 101, 21,361-21.
- Jensen, E., et al. (1994), Microphysical Modeling of Cirrus 2: Sensitivity Studies, J. Geophys. Res., 99, 10,443-10.
- Jensen, E., et al. (1994), Microphysical Modeling of Cirrus 1: Comparison with 1986 FIRE IFO Measurements, J. Geophys. Res., 99, 10,421-10.
- Jensen, E., and B. Toon (1994), Ice Nucleation in the Upper Troposphere: Sensitivity to Aerosol Number Density, Temperature, and Cooling Rate, Geophys. Res. Lett., 21, 2019-2022.
- Jensen, E., and G. E. Thomas (1994), Numerical Simulations of the Effects of Gravity Waves on Noctilucent Clouds, J. Geophys. Res., 99, 3421-3430.
- Jensen, E., S. Kinne, and B. Toon (1994), Tropical Cirrus Cloud Radiative Forcing: Sensitivity Studies, Geophys. Res. Lett., 21, 2023-2026.
- Jensen, E., and O. B. Toon (1992), The potential effects of volcanic aerosols on cirrus cloud microsphysics, Geophy. Res. Lett., 19, 1759-1763.
- Jensen, E., B. Toon, and P. Hammell (1991), Homogeneous Freezing Nucleation of Stratospheric H2SO4 Solution Drops, Geophys. Res. Lett., 18, 1857-1860.
- Jensen, E., G. Thomas, and B. Toon (1989), On the Diurnal Variation of Noctilucent Clouds, J. Geophys. Res., 94, 12,693-14.
Co-Authored Publications:
- Schoeberl, M. R., et al. (2023), Analysis and Impact of the Hunga Tonga-Hunga Ha'apai Stratospheric Water Vapor Plume, Geophys. Res. Lett..
- Schoeberl, M. R., et al. (2023), Analysis and Impact of the Hunga Tonga-Hunga Ha'apai Stratospheric Water Vapor Plume, Geophys. Res. Lett..
- Ueyama, R., et al. (2023), Convective Impact on the Global Lower Stratospheric Water Vapor Budget, J. Geophys. Res., 128, e2022JD037135, doi:10.1029/2022JD037135.
- Froyd, K., et al. (2022), Dominant role of mineral dust in cirrus cloud formation revealed by global-scale measurements, Nat. Geosci., 15, 177-183, doi:10.1038/s41561-022-00901-w.
- Pfister, L., et al. (2022), Deep Convective Cloud Top Altitudes at High Temporal and Spatial Resolution, Earth and Space, 1, 22.
- Schoeberl, M. R., et al. (2022), Cloud and Aerosol Distributions From SAGE III/ISS Observations, J. Geophys. Res..
- Ueyama, R., et al. (2020), Impact of Convectively Detrained Ice Crystals on the Humidity of the Tropical Tropopause Layer in Boreal Winter, J. Geophys. Res., 125, 1-17, doi:10.1029/2020JD032894.
- Yu, W., et al. (2020), Influence of convection on stratospheric water vapor in the North American monsoon region, Atmos. Chem. Phys., 20, 12153-12161, doi:10.5194/acp-20-12153-2020.
- Schoeberl, M. R., et al. (2019), Water Vapor, Clouds, and Saturation in the Tropical Tropopause Layer, J. Geophys. Res., 124, doi:10.1029/2018JD029849.
- Kärcher, B., et al. (2018), On the statistical distribution of total water in cirrus clouds, Geophys. Res. Lett., 45, 9963-9971, doi:10.1029/2018GL079780.
- Podglajen, A., et al. (2018), Impact of gravity waves on the motion and distribution of atmospheric ice particles, Atmos. Chem. Phys., 18, 10799-10823, doi:10.5194/acp-18-10799-2018.
- Ueyama, R., E. Jensen, and L. Pfister (2018), Convective Influence on the Humidity and Clouds in the Tropical Tropopause Layer During Boreal Summer, J. Geophys. Res., 123.
- Woods, S., et al. (2018), Microphysical Properties of Tropical Tropopause Layer Cirrus, J. Geophys. Res., 123, doi:.org/.
- Kim, J., et al. (2016), Ubiquitous influence of waves on tropical high cirrus clouds, Geophys. Res. Lett., 43, 5895-5901, doi:10.1002/2016GL069293.
- Toon, B., et al. (2016), Planning, implementation, and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission, J. Geophys. Res., 121, 4967-5009, doi:10.1002/2015JD024297.
- Ueyama, R., et al. (2015), Dynamical, convective, and microphysical control on wintertime distributions of water vapor and clouds in the tropical tropopause layer, J. Geophys. Res., 120, 10,483-10,500, doi:10.1002/2015JD023318.
- Bergman, J., et al. (2014), Analyzing dynamical curculations in the tropical tropopause layer through empirical predictions of cirrus cloud distributions, J. Geophys. Res., 119, 2831-2845, doi:10.1002/2013JD021295.
- Rollins, A., et al. (2014), Evaluation of UT/LS hygrometer accuracy by intercomparison during the NASA MACPEX mission, J. Geophys. Res., 119, doi:10.1002/2013JD020817.
- Ueyama, R., et al. (2014), Dehydration in the tropical tropopause layer: A case study for model evaluation using aircraft observations, J. Geophys. Res., 119, 5299-5316, doi:10.1002/2013JD021381.
- Bardeen, C., et al. (2013), Improved cirrus simulations in a general circulation model using CARMA sectional microphysics., O. Toon.. Improved cirrus simulations in a general circulation model using CARMA sectional microphysics. J. Geophys, Res.: Atmospheres, 118 (20), 118, 11,679-11,697, doi:10.1002/2013JD020193.
- Baustian, K., et al. (2013), State transformations and ice nucleation in amorphous (semi-)solid organic aerosol, Atmos. Chem. Phys., 13, 5615-5628, doi:10.5194/acp-13-5615-2013.
- Bergman, J., et al. (2013), Boundary layer sources for the Asian anticyclone, J. Geophys. Res., 118, 2560-2575, doi:10.1002/jgrd.50142.
- Cziczo, D., et al. (2013), Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation, Science, 340, 1320-1324.
- Randel, W., and E. Jensen (2013), Physical processes in the tropical tropopause layer and their roles in a changing climate, Nature Geoscience, 6, 169-176, doi:10.1038/ngeo1733.
- Bergman, J., et al. (2012), Seasonal differences of vertical-transport efficiency in the tropical tropopause layer: On the interplay between tropical deep convection, large-scale vertical ascent, and horizontal circulations, J. Geophys. Res., 117, D05302, doi:10.1029/2011JD016992.
- Chandran, A., et al. (2012), Atmospheric gravity wave effects on polar mesospheric clouds: A comparison of numerical simulations from CARMA 2D with AIM observations, J. Geophys. Res., 117, D20104, doi:10.1029/2012JD017794.
- Liu, X., et al. (2012), Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5, Atmos. Chem. Phys., 12, 12061-12079, doi:10.5194/acp-12-12061-2012.
- Randel, W., et al. (2012), Global variations of HDO and HDO/H2O ratios in the upper troposphere and lower stratosphere derived from ACE-FTS satellite measurements, J. Geophys. Res., 117, D06303, doi:10.1029/2011JD016632.
- Wise, M. E., et al. (2012), Depositional ice nucleation onto crystalline-hydrated NaCl particles: a new mechanism for ice formation in the troposphere, Atmos. Chem. Phys., 12, 1121-1134, doi:10.5194/acp-12-1121-2012.
- Bardeen, C., et al. (2010), Numerical simulations of the three-dimensional distribution of polar mesospheric clouds and comparisons with Cloud Imaging and Particle Size (CIPS) experiment and the Solar Occultation For Ice Experiment (SOFIE) observations, J. Geophys. Res., 115, D10204, doi:10.1029/2009JD012451.
- Davis, S., et al. (2010), In situ and lidar observations of tropopause subvisible cirrus clouds during TC4, J. Geophys. Res., 115, D00J17, doi:10.1029/2009JD013093.
- Lawson, P., et al. (2010), Microphysical and radiative properties of tropical clouds investigated in TC4 and NAMMA, J. Geophys. Res., 115, D00J08, doi:10.1029/2009JD013017.
- Murray, B. J., and E. Jensen (2010), Homogeneous nucleation of amorphous solid water particles in the upper mesosphere, Journal of Atmospheric and Solar-Terrestrial Physics, 72, 51-61, doi:10.1016/j.jastp.2009.10.007.
- Toon, B., et al. (2010), Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J04, doi:10.1029/2009JD013073.
- Merkel, A. W., et al. (2009), On the relationship of polar mesospheric cloud ice water content, particle radius and mesospheric temperature and its use in multi-dimensional models, Atmos. Chem. Phys., 9, 8889-8901.
- Bardeen, C., et al. (2008), Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere, J. Geophys. Res., 113, D17202, doi:10.1029/2007JD009515.
- Lawson, P., et al. (2008), Microphysical Properties of subvisible cirrus, Atmos. Chem. Phys., 8, 1609-1620.
- Lawson, P., et al. (2008), Aircraft measurements of microphysical properties of subvisible cirrus in the tropical tropopause layer, Atmos. Chem. Phys., 8, 1609-1620.
- Kazil, J., et al. (2007), Is aerosol formation in cirrus clouds possible?, Atmos. Chem. Phys., 7, 1407-1413.
- Popp, P., et al. (2007), Condensed-phase nitric acid in a tropical subvisible cirrus cloud, Geophys. Res. Lett., 34, L24812, doi:10.1029/2007GL031832.
- Popp, P., et al. (2006), The observation of nitric acid-containing particles in the tropical lower stratosphere, Atmos. Chem. Phys., 6, 601-611, doi:10.5194/acp-6-601-2006.
- Shilling, J. E., et al. (2006), Measurements of the vapor pressure of cubic ice and their implications for atmospheric ice clouds, Geophys. Res. Lett., 33, L17801, doi:10.1029/2006GL026671.
- Smith, J. A., et al. (2006), Role of deep convection in establishing the isotopic composition of water vapor in the tropical transition layer, Geophys. Res. Lett., 33, L06812, doi:10.1029/2005GL024078.
- Garrett, T., et al. (2005), Evolution of a Florida Cirrus Anvil, J. Atmos. Sci., 62, 2352-2372.
- Fridlind, A. M., et al. (2004), Evidence for the Predominance of Mid-Tropospheric Aerosols as Subtropical Anvil Cloud Nuclei, Science, 304, 718.
- Pfister, L., et al. (2003), Processes controlling water vapor in the winter Arctic tropopause region, J. Geophys. Res., 108, 8314, doi:10.1029/2001JD001067.
- Chu, X., et al. (2002), Response of polar mesospheric cloud brightness to stratospheric gravity waves at the South Pole and Rothera, Antarctica, JASTP, 71, 434-445, doi:10.1016/j.jastp.2008.10.002.
- Lin, R. F., et al. (2002), Cirrus Parcel Model Comparison Project, Phase 1: The critical components to simulate cirrus initiation explicitly, J. Atmos. Sci., 59, 2305-2329.
- Rapp, M., et al. (2002), Small-scale temperature variations in the vicinity of NLC: Experimental and model results, J. Geophys. Res., 107, doi:10.1029/2001JD00241.
- Santee, M., et al. (2002), Lagrangian approach to studying Arctic polar stratospheric clouds using UARS MLS HNO3 and POAM II aerosol extinction measurements, J. Geophys. Res., 107.
- Pfister, L., et al. (2001), Aircraft observations of thin cirrus clouds near the Tropical Tropopause, J. Geophys. Res., 106, 9765-9786.
- Tabazadeh, A., et al. (2001), Role of the Stratospheric Polar Freezing Belt in Denitrification, Science, 291, 2591-2594.
- Sandor, B., et al. (2000), Upper tropospheric humidity and thin Cirrus, Geophys. Res. Lett., 27, 2645.
- Vay, S. A., et al. (2000), Tropospheric water vapor measurements over the North Atlantic during the Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX), J. Geophys. Res., 105, 3745-3755.
- Tabazadeh, A., B. Toon, and E. Jensen (1999), A surface chemistry model for nonreactive trace gas absorption on ice: Implications for nitric acid scavenging by cirrus, Geophys. Res. Lett., 26, 2211-2214.
- Hamill, P., et al. (1997), The life cycle of stratospheric aerosol particles, Bull. Amer. Met. Soc., 78, 1395-1410.
- Tabazadeh, A., B. Toon, and E. Jensen (1997), Formation and implications of ice particle nucleation in the stratosphere, Geophys. Res. Lett., 24, 2007.
- Tabazadeh, A., E. Jensen, and B. Toon (1997), A model description for cirrus cloud nucleation from homogeneous freezing of sulfate aerosols, J. Geophys. Res., 102, 23.
- Jacobson, M. Z., et al. (1994), Modeling coagulation among particles of different composition and size, Atmos. Environ., 28, 1327-1338.