Edward Hyer
Organization:
Naval Research Laboratory
Email:
Business Phone:
Work:
(831) 656-4023
Mobile:
(831) 869-9847
Fax:
(831) 656-4769
Mobile:
(831) 232-0051
Business Address:
Naval Research Laboratory
7 Grace Hopper Avenue
Stop 2
Monterey, CA 93943
United StatesFirst Author Publications:
- Hyer, E., et al. (2013), Patterns of fire activity over Indonesia and Malaysia from polar and geostationary satellite observations, Atmos. Res., 122, 504-519, doi:10.1016/j.atmosres.2012.06.011.
- Hyer, E., J. Wang, and A. Arellano (2012), Biomass Burning Observations, Modeling, and Data Assimilation, Bull. Am. Meteorol. Soc., ES10, doi:10.1175/BAMS-D-11-00064.1.
Co-Authored Publications:
- Xian, P., et al. (2024), Intercomparison of aerosol optical depths from four reanalyses and their multi-reanalysis consensus, Atmos. Chem. Phys., doi:10.5194/acp-24-6385-2024.
- Berman, M., et al. (2023), Quantifying burned area of wildfires in the western United States from polar-orbiting and geostationary satellite active-fire detections, International Journal of Wildland Fire, 32, 665-678, doi:10.1071/WF22022.
- Xian, P., et al. (2023), Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 1: Climatology and trend, Atmos. Chem. Phys., doi:10.5194/acp-22-9915-2022.
- Xian, P., et al. (2023), Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 2: Statistics of extreme AOD events, and implications for the impact of regional biomass burning processes, Atmos. Chem. Phys., doi:10.5194/acp-22-9949-2022.
- Zhou, M., et al. (2023), Enhancement of Nighttime Fire Detection and Combustion Efficiency Characterization Using Suomi-NPP and NOAA-20 VIIRS Instruments, IEEE Trans. Geosci. Remote Sens., 61, 4402420, doi:10.1109/TGRS.2023.3261664.
- Peterson, D., et al. (2022), Measurements from inside a Thunderstorm Driven by Wildfire: The 2019 FIREX-AQ Field Experiment, Bull. Amer. Meteor. Soc., 103, E2140-E2167, doi:10.1175/BAMS-D-21-0049.1.
- Reid, J. S., et al. (2022), EXTREME BIOMASS BURNING SMOKE, Community Challenges And Prospects In The Operational Forecasting Of, doi:10.1109/IGARSS47720.2021.9555160.
- Zhang, J., et al. (2021), Development of an Ozone Monitoring Instrument (OMI) aerosol index (AI) data assimilation scheme for aerosol modeling over bright surfaces – a step toward direct radiance assimilation in the UV spectrum, Geosci. Model. Dev., 14, 27-42, doi:10.5194/gmd-14-27-2021.
- Li, Y., et al. (2020), Ensemble PM2.5 Forecasting During the 2018 Camp Fire Event Using the HYSPLIT Transport and Dispersion Model, J. Geophys. Res., 125, e2020JD032768, doi:10.1029/2020JD032768.
- Peterson, D. A., et al. (2020), Meteorology influencing springtime air quality, pollution transport, and visibility in Korea, air quality, pollution transport, and visibility in Korea. Elem Sci, 7, 57, doi:10.1525/elementa.395.
- Wang, J., et al. (2020), Detecting nighttime fire combustion phase by hybrid application of visible T and infrared radiation from Suomi NPP VIIRS, Remote Sensing of Environment, 237, 111466, doi:10.1016/j.rse.2019.111466.
- Wang, J., et al. (2020), Development of a nighttime shortwave radiative transfer model for remote T sensing of nocturnal aerosols and fires from VIIRS, Remote Sensing of Environment, 241, 111727, doi:10.1016/j.rse.2020.111727.
- Christian, K., et al. (2019), Radiative Forcing and Stratospheric Warming of Pyrocumulonimbus Smoke Aerosols: First Modeling Results With Multisensor (EPIC, CALIPSO, and CATS) Views from Space, Geophys. Res. Lett., 46, 10,061-10,071, doi:10.1029/2019GL082360.
- Jovanovic, D. J. D. V., et al. (2018), Advances in multiangle satellite remote sensing of speciated airborne particulate matter and association with adverse health effects: from MISR to MAIA, Terms of Use, 12, 042603, doi:10.1117/1.JRS.12.042603.
- Peng, X., et al. (2018), Current state of the global operational aerosol multi-model ensemble: An update from the International Cooperative for Aerosol Prediction (ICAP), Q. J. R. Meteorol. Soc., 30, 8, doi:10.1002/qj.3497.
- Ge, C., et al. (2017), Mesoscale modeling of smoke transport from equatorial Southeast Asian Maritime Continent to the Philippines: First comparison of ensemble analysis with in situ observations, J. Geophys. Res., 122, 5380-5398, doi:10.1002/2016JD026241.
- Polivka, T. N., et al. (2017), Improving Nocturnal Fire Detection with the VIIRS Day-Night Band, Blank 1.
- Campbell, J., et al. (2016), Applying Advanced Ground-Based Remote Sensing in the Southeast Asian Maritime Continent to Characterize Regional Proficiencies in Smoke Transport Modeling, J. Appl. Meteor. Climat., 55, 3-22, doi:10.1175/JAMC-D-15-0083.1.
- Polivka, T. N., et al. (2016), Improving Nocturnal Fire Detection with the VIIRS Day-Night Band, IEEE Transactions on Geoscience &, Remote Sensing, 9, 5503-5519.
- Polivka, T. N., et al. (2016), Improving Nocturnal Fire Detection with the VIIRS Day-Night Band, IEEE Transactions on Geoscience &, Remote Sensing, 9, 5503-5519.
- Reid, J., et al. (2016), Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study – Part 2: Philippine receptor observations of fine-scale aerosol behavior, Atmos. Chem. Phys., 16, 14057-14078, doi:10.5194/acp-16-14057-2016.
- Reid, J., et al. (2016), Aerosol meteorology of the Maritime Continent for the 2012 7SEAS southwest monsoon intensive study – Part 1: regional-scale phenomena, Atmos. Chem. Phys., 16, 14041-14056, doi:10.5194/acp-16-14041-2016.
- Christensen, M., et al. (2015), A theoretical study of the effect of subsurface oceanic bubbles on the enhanced aerosol optical depth band over the southern oceans as detected from MODIS and MISR, Atmos. Meas. Tech., 8, 2149-2160, doi:10.5194/amt-8-2149-2015.
- McHardy, T. M., et al. (2015), An improved method for retrieving nighttime aerosol optical thickness from the VIIRS Day/Night Band, Atmos. Meas. Tech., 8, 4773-4783, doi:10.5194/amt-8-4773-2015.
- Reid, J., et al. (2015), Observations of the temporal variability in aerosol properties and their relationships to meteorology in the summer monsoonal South China Sea/East Sea, Atmos. Chem. Phys., 15, 1745-1768, doi:10.5194/acp-15-1745-2015.
- Saide Peralta, et al. (2015), Revealing important nocturnal and day-to-day variations in fire smoke emissions through a multiplatform inversion, Geophys. Res. Lett., 42, 3609-3618, doi:10.1002/2015GL063737.
- Peterson, D., E. Hyer, and J. Wang (2014), Quantifying the potential for high-altitude smoke injection in the North American boreal forest using the standard MODIS fire products and subpixel-based methods, J. Geophys. Res., 119, 3401-3419, doi:10.1002/2013JD021067.
- Peterson, D., E. Hyer, and J. Wang (2014), Quantifying the potential for high-altitude smoke injection in the North American boreal forest using the standard MODIS fire products and subpixel-based methods, J. Geophys. Res., 119, 3401-3419, doi:10.1002/2013JD021067.
- Toth, T. D., et al. (2014), Impact of data quality and surface-to-column representativeness on the PM2.5/satellite AOD relationship for the contiguous United States, Atmos. Chem. Phys., 14, 6049-6062, doi:10.5194/acp-14-6049-2014.
- Zhang, F., et al. (2014), Sensitivity of mesoscale modeling of smoke direct radiative effect to the emission inventory: A case study in northern sub-Saharan African region, Environmental Research Letter, 9, 075002, doi:10.1088/1748-9326/9/7/075002.
- Zhang, J., et al. (2014), Evaluating the impact of multisensor data assimilation on a global aerosol particle transport model, J. Geophys. Res., 119, 4674-4689, doi:10.1002/2013JD020975.
- Peterson, D., et al. (2013), A sub-pixel-based calculation of fire radiative power from MODIS observations: 1 Algorithm development and initial assessment, Remote Sensing of Environment, 129, 262-279, doi:10.1016/j.rse.2012.10.036.
- Peterson, D., E. Hyer, and J. Wang (2013), Short communication A short-term predictor of satellite-observed fire activity in the North American boreal forest: Toward improving the prediction of smoke emissions, Atmos. Environ., 71, 304-310, doi:10.1016/j.atmosenv.2013.01.052.
- Reid, J., et al. (2013), Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program, Atmos. Res., 122, 403-468, doi:10.1016/j.atmosres.2012.06.005.
- Shi, Y., et al. (2013), Critical evaluation of the MODIS Deep Blue aerosol optical depth product for data assimilation over North Africa, Atmos. Meas. Tech., 6, 949-969, doi:10.5194/amt-6-949-2013.
- Wang, J., et al. (2013), Mesoscale modeling of smoke transport over the Southeast Asian Maritime Continent: Interplay of sea breeze, trade wind, typhoon, and topography, Atmos. Res., 122, 486-503, doi:10.1016/j.atmosres.2012.05.009.
- Yang, Z., et al. (2013), Mesoscale modeling and satellite observation of transport and mixing of smoke and dust particles over northern sub-Saharan African region, J. Geophys. Res., 118, 12139-12157, doi:10.1002/2013JD020644.
- Reid, J., et al. (2012), Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in the Maritime Continent, Atmos. Chem. Phys., 12, 2117-2147, doi:10.5194/acp-12-2117-2012.
- Martini, M., et al. (2011), The impact of North American anthropogenic emissions and lightning on long‐range transport of trace gases and their export from the continent during summers 2002 and 2004, J. Geophys. Res., 116, D07305, doi:10.1029/2010JD014305.
- Mu, M., et al. (2011), Daily and 3‐hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide, J. Geophys. Res., 116, D24303, doi:10.1029/2011JD016245.
- Campbell, J., et al. (2010), CALIOP Aerosol Subset Processing for Global Aerosol Transport Model Data Assimilation, Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing, 3, 203-214, doi:10.1109/JSTARS.2010.2044868.
- Fisher, J. A., et al. (2010), Source attribution and interannual variability of Arctic pollution in spring constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations of carbon monoxide, Atmos. Chem. Phys., 10, 977-996, doi:10.5194/acp-10-977-2010.
- Reid, J., et al. (2009), Global Monitoring and Forecasting of Biomass-Burning Smoke: Description of and Lessons From the Fire Locating and Modeling of Burning Emissions (FLAMBE) Program, Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing, 2, 144-162, doi:10.1109/JSTARS.2009.2027443.