Dylan Millet
Organization:
University of Minnesota
Email:
Business Address:
1991 Upper Buford CIrcle
St. Paul, MN 55108
United StatesFirst Author Publications:
- Millet, D., et al. (2018), Cite This: ACS Earth Space Chem. 2018, 2, 764−777 Bidirectional Ecosystem−Atmosphere Fluxes of Volatile Organic Compounds Across the Mass Spectrum: How Many Matter?, ACS Earth Space Chem., 2018, 764−777, doi:10.1021/acsearthspacechem.8b00061.
- Millet, D., et al. (2012), Natural and anthropogenic ethanol sources in North America and potential atmospheric impacts of ethanol fuel use, Environ. Sci. Technol., 46, 8484−8492.
- Millet, D., et al. (2010), Global atmospheric budget of acetaldehyde: 3D model analysis and constraints from in-situ and satellite observations, Atmos. Chem. Phys., 10, 3405-3425.
- Millet, D., et al. (2009), Halocarbon Emissions from the United States and Mexico and Their Global Warming Potential, Environ. Sci. Technol., 43, 1055-1060, doi:10.1021/es802146j.
- Millet, D., et al. (2008), New constraints on terrestrial and oceanic sources of atmospheric methanol, Atmos. Chem. Phys. Discuss., 8, 7609-7655.
- Millet, D., et al. (2008), New constraints on terrestrial and oceanic sources of atmospheric methanol, Atmos. Chem. Phys., 8, 6887-6905, doi:10.5194/acp-8-6887-2008.
- Millet, D., et al. (2008), Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor, J. Geophys. Res., 113, D02307, doi:10.1029/2007JD008950.
- Millet, D., et al. (2006), Formaldehyde distribution over North America: Implications for satellite retrievals of formaldehyde columns and isoprene emission, J. Geophys. Res., 111, D24S02, doi:10.1029/2005JD006853.
Co-Authored Publications:
- Shutter, J. D., et al. (2024), Sc i e n c e Ad v a n c e s | Re s e ar c h Ar t i c l e, Shutter et al., Sci. Adv., 10, 2024.
- Tian, H., et al. (2024), Global nitrous oxide budget (1980–2020), Earth Syst. Sci. Data, 16, 2543-2604, doi:10.5194/essd-16-2543-2024.
- Yu, X., et al. (2023), A high-resolution satellite-based map of global methane emissions reveals missing wetland, fossil fuel, and monsoon sources, Atmos. Chem. Phys., doi:10.5194/acp-23-3325-2023.
- Gonzalez, A., et al. (2022), Fossil Versus Nonfossil CO Sources in the US: New Airborne Constraints From ACT-America and GEM, Geophys. Res. Lett..
- Wells, K. C., et al. (2022), Next‐generation isoprene measurements from space: Detecting daily variability at high resolution, J. Geophys. Res., 127, e2021JD036181, doi:10.1029/2021JD036181.
- Xu, R., et al. (2022), Magnitude and Uncertainty of Nitrous Oxide Emissions From North America Based on Bottom-Up and Top-Down Approaches: Informing Future Research and National Inventories, Geophys. Res. Lett..
- Bates, K. H., et al. (2021), The Global Budget of Atmospheric Methanol: New Constraints on Secondary, Oceanic, and Terrestrial Sources, J. Geophys. Res., 126, doi:10.1029/2020JD033439.
- Chen, X., et al. (2021), HCOOH in the Remote Atmosphere: Constraints from Atmospheric Tomography (ATom) Airborne Observations, ACS Earth Space Chem., doi:10.1021/acsearthspacechem.1c00049.
- Deventer, M. J., et al. (2021), Biases in open-path carbon dioxide flux measurements: Roles of instrument surface heat exchange and analyzer temperature sensitivity, Agricultural and Forest Meteorology, 296, 108216, doi:10.1016/j.agrformet.2020.108216.
- Yu, X., D. Millet, and D. K. Henze (2021), How well can inverse analyses of high-resolution satellite data resolve heterogeneous methane fluxes? Observing system simulation experiments with the GEOS-Chem adjoint model (v35), Geosci. Model. Dev., 14, 7775-7793, doi:10.5194/gmd-14-7775-2021.
- Yu, X., et al. (2021), Aircraft-based inversions quantify the importance of wetlands and livestock for Upper Midwest methane emissions, Atmos. Chem. Phys., 21, 951-971, doi:10.5194/acp-21-951-2021.
- Canaval, E., et al. (2020), Rapid conversion of isoprene photooxidation products in terrestrial plants, Commun. Earth Environ., 1, 44, doi:10.1038/s43247-020-00041-2.
- Feng, X., et al. (2020), Climate Sensitivity of Peatland Methane Emissions Mediated by Seasonal Hydrologic Dynamics, Geophys. Res. Lett., 47, e2020GL088875, doi:10.1029/2020GL088875.
- Travis, K., et al. (2020), Constraining remote oxidation capacity with ATom observations, Atmos. Chem. Phys., 20, 7753-7781, doi:10.5194/acp-20-7753-2020.
- Wells, K. C., et al. (2020), Satellite isoprene retrievals constrain emissions and atmospheric oxidation, Nature, 585, 225-233, doi:10.1038/s41586-020-2664-3.
- Yu, X., et al. (2020), Top‐Down Constraints on Methane Point Source Emissions From Animal Agriculture and Waste Based on New Airborne Measurements in the U.S. Upper Midwest, J. Geophys. Res., 125, doi:10.1029/2019JG005429.
- Alwe, H. D., et al. (2019), Oxidation of Volatile Organic Compounds as the Major Source of Formic Acid in a Mixed Forest Canopy, Geophys. Res. Lett., 46, 2940-2948, doi:10.1029/2018GL081526.
- Chaliyakunnel, S., D. Millet, and X. Chen (2019), Constraining Emissions of Volatile Organic Compounds Over the Indian Subcontinent Using Space‐Based Formaldehyde Measurements, J. Geophys. Res., 124, 10,525-10,545, doi:10.1029/2019JD031262.
- Chen, X., et al. (2019), On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America, Atmos. Chem. Phys., 19, 9097-9123, doi:10.5194/acp-19-9097-2019.
- Deventer, M. J., et al. (2019), Error characterization of methane fluxes and budgets derived from a long- T term comparison of open- and closed-path eddy covariance systems, Agricultural and Forest Meteorology, 278, 107638, doi:10.1016/j.agrformet.2019.107638.
- Fu, D., et al. (2019), Direct retrieval of isoprene from satellite-based infrared measurements, Nature Communications, doi:10.1038/s41467-019-11835-0.
- Yan, Y., et al. (2019), Global tropospheric effects of aromatic chemistry with the SAPRC-11 mechanism implemented in GEOS-Chem version 9-02, Geosci. Model. Dev., 12, 111-130, doi:10.5194/gmd-12-111-2019.
- Chen, Z., et al. (2018), Source Partitioning of Methane Emissions and its Seasonality in the U.S. Midwest, J. Geophys. Res., 123, 646-659, doi:10.1002/2017JG004356.
- David, L. M., et al. (2018), Aerosol Optical Depth Over India, J. Geophys. Res., 123, doi:10.1002/2017JD027719.
- Shaw, M. F., et al. (2018), Photo-tautomerization of acetaldehyde as a photochemical source of formic acid in the troposphere, Nature Communications, doi:10.1038/s41467-018-04824-2.
- Venkataraman, C., et al. (2018), Source influence on emission pathways and ambient PM2.5 pollution over India (2015–2050), Atmos. Chem. Phys., 18, 8017-8039, doi:10.5194/acp-18-8017-2018.
- Zhu, L., et al. (2017), Formaldehyde (HCHO) As a Hazardous Air Pollutant: Mapping Surface Air Concentrations from Satellite and Inferring Cancer Risks in the United States, Environ. Sci. Technol., 51, 5650-5657, doi:10.1021/acs.est.7b01356.
- Kim, P., et al. (2015), Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model, Atmos. Chem. Phys., 15, 10411-10433, doi:10.5194/acp-15-10411-2015.
- Shephard, M. W., et al. (2015), Tropospheric Emission Spectrometer (TES) satellite observations of ammonia, methanol, formic acid, and carbon monoxide over the Canadian oil sands: validation and model evaluation, Atmos. Meas. Tech., 8, 5189-5211, doi:10.5194/amt-8-5189-2015.
- Cady-Pereira, K., et al. (2014), HCOOH measurements from space: TES retrieval algorithm and observed global distribution, Atmos. Meas. Tech., 7, 2297-2311, doi:10.5194/amt-7-2297-2014.
- Fischer, E., et al. (2014), Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution, Atmos. Chem. Phys., 14, 2679, doi:10.5194/acp-14-2679-2014.
- Wells, K., et al. (2014), Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor, Atmos. Chem. and Physics, 14, 2555-2555, doi:10.5194/acp-14-2555-2014.
- Hu, L., et al. (2013), North American acetone sources determined from tall tower measurements and inverse modeling, Atmos. Chem. Phys., 13, 3379-3392, doi:10.5194/acp-13-3379-2013.
- Cady-Pereira, K., et al. (2012), Methanol from TES global observations: retrieval algorithm and seasonal and spatial variability, Atmos. Chem. Phys., 12, 8189-8203, doi:10.5194/acp-12-8189-2012.
- Fischer, E., et al. (2012), The role of the ocean in the global atmospheric budget of acetone, Geophys. Res. Lett., 39, L01807, doi:10.1029/2011GL050086.
- Marais, E. A., et al. (2012), Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns, Atmos. Chem. Phys., 12, 6219-6235, doi:10.5194/acp-12-6219-2012.
- Wells, K. C., et al. (2012), Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions, Atmos. Chem. Phys., 12, 5897-5912, doi:10.5194/acp-12-5897-2012.
- Xiao, Y., et al. (2012), Methanol-CO correlations in Mexico City pollution outflow from aircraft and satellite during MILAGRO, Atmos. Chem. Phys., 12, 5705-5738.
- Alvarado, M. J., et al. (2011), Emission Ratios for Ammonia and Formic Acid and Observations of Peroxy Acetyl Nitrate (PAN) and Ethylene in Biomass Burning Smoke as Seen by the Tropospheric Emission Spectrometer (TES), Atmosphere, 2, 633-654, doi:10.3390/atmos2040633.
- Boeke, N. L., et al. (2011), Formaldehyde columns from the Ozone Monitoring Instrument: Urban versus background levels and evaluation using aircraft data and a global model, J. Geophys. Res., 116, D05303, doi:10.1029/2010JD014870.
- Paulot, F., et al. (2011), Importance of secondary sources in the atmospheric budgets of formic and acetic acids, Atmos. Chem. Phys., 11, 1989-2013, doi:10.5194/acp-11-1989-2011.
- Choi, W., et al. (2010), Observations of elevated formaldehyde over a forest canopy suggest missing sources from rapid oxidation of arboreal hydrocarbons, Atmos. Chem. Phys., 10, 8761-8781, doi:10.5194/acp-10-8761-2010.
- Naik, V., et al. (2010), Observational constraints on the global atmospheric budget of ethanol, Atmos. Chem. Phys., 10, 925-945.
- Dunlea, E. J., et al. (2009), Evolution of Asian aerosols during transpacific transport in INTEX-B, Atmos. Chem. Phys., 9, 7257-7287, doi:10.5194/acp-9-7257-2009.
- Hudman, R. C., et al. (2009), North American influence on tropospheric ozone and the effects of recent emission reductions: Constraints from ICARTT observations, J. Geophys. Res., 114, D07302, doi:10.1029/2008JD010126.
- Parrington, M., et al. (2009), Impact of the assimilation of ozone from the Tropospheric Emission Spectrometer on surface ozone across North America, Geophys. Res. Lett., 36, L04802, doi:10.1029/2008GL036935.
- Fried, A., et al. (2008), Formaldehyde over North America and the North Atlantic during the summer 2004 INTEX campaign: Methods, observed distributions, and measurement-model comparisons, J. Geophys. Res., 113, D10302, doi:10.1029/2007JD009185.
- Fried, A., et al. (2008), Role of convection in redistributing formaldehyde to the upper troposphere over North America and the North Atlantic during the summer 2004 INTEX campaign, J. Geophys. Res., 113, D17306, doi:10.1029/2007JD009760.
- Heald, C. L., et al. (2008), Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations, Atmos. Chem. Phys., 8, 2007-2025, doi:10.5194/acp-8-2007-2008.
- Heald, C. L., et al. (2008), Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations, Atmos. Chem. Phys., 8, 2007-2025.
- Hudman, R. C., et al. (2008), Biogenic versus anthropogenic sources of CO in the United States, Geophys. Res. Lett., 35, L04801, doi:10.1029/2007GL032393.
- Miller, S., et al. (2008), Sources of carbon monoxide and formaldehyde in North America determined from high-resolution atmospheric data, Atmos. Chem. Phys., 8, 7673-7696, doi:10.5194/acp-8-7673-2008.
- Tang, Y., et al. (2004), Multiscale simulations of tropospheric chemistry in the eastern Pacific and on the U.S. West Coast during spring 2002, J. Geophys. Res., 109, D23S11, doi:10.1029/2004JD004513.