Brian Cairns
Organization:
NASA Goddard Institute for Space Studies
Email:
Business Phone:
Work:
(212) 678-5625
Mobile:
(845) 764-1334
Fax:
(212) 678-5622
Business Address:
NASA GISS
2880 Broadway
New York, NY 10025
United StatesWebsite:
First Author Publications:
- Cairns, B., E. E. Russell, and L. D. Travis (1999), The Research Scanning Polarimeter: Calibration and ground-based measurements. In Polarization: Measurement, Analysis, and Remote Sensing II, 18 Jul. 1999, Denver, Col., Proc. SPIE, 3754, 186, doi:10.1117/12.366329.
Co-Authored Publications:
- Crosbie, E., et al. (2024), Measurement report: Cloud and environmental properties associated with aggregated shallow marine cumulus and cumulus congestus, Atmos. Chem. Phys., doi:10.5194/acp-24-6123-2024.
- Li, X., et al. (2024), Process Modeling of Aerosol‐Cloud Interaction in Summertime Precipitating Shallow Cumulus Over the Western North Atlantic, J. Geophys. Res., 129, e2023JD039489, doi:10.1029/2023JD039489.
- Schlosser, J., et al. (2024), Maximizing the Volume of Collocated Data from Two Coordinated Suborbital Platforms, J. Atmos. Oceanic Technol., 41, 189-201, doi:10.1175/JTECH-D-23-0001.1.
- Siu, L. W., et al. (2024), Retrievals of aerosol optical depth over the western North Atlantic Ocean during ACTIVATE, Atmos. Meas. Tech., 17, 2739-2759, doi:10.5194/amt-17-2739-2024.
- Siu, L. W., et al. (2024), Summarizing multiple aspects of triple collocation analysis in a single diagram, Frontiers in Remote Sensing, 5, 10.3389/frsen.2024.1395442, doi:10.3389/frsen.2024.1395442.
- Li, X., et al. (2023), Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part II: Aerosol–Meteorology–Cloud Interaction, J. Atmos. Sci., 80, 1025-1045, doi:10.1175/JAS-D-21-0324.1.
- Nied, J., et al. (2023), A cloud detection neural network for above-aircraft clouds using airborne cameras, Frontiers in Remote Sensing, 4, 10.3389/frsen.2023.1118745, doi:10.3389/frsen.2023.1118745.
- Sorooshian, A., et al. (2023), Spatially coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: the NASA ACTIVATE dataset, Earth Syst. Sci. Data, 15, 3419-3472, doi:10.5194/essd-15-3419-2023.
- Tornow, F., et al. (2023), On the Impact of a Dry Intrusion Driving Cloud-Regime Transitions in a Midlatitude Cold-Air Outbreak, J. Atmos. Sci., 80, 2881-2896, doi:10.1175/JAS-D-23-0040.1.
- Alexandrov, M. D., et al. (2022), Markovian Statistical Model of Cloud Optical Thickness. Part I: Theory and Examples, J. Atmos. Sci., 79, 3315-3332, doi:10.1175/JAS-D-22-0125.1.
- Fu, D., et al. (2022), An evaluation of the liquid cloud droplet effective radius derived from MODIS, airborne remote sensing, and in situ measurements from CAMP2 Ex, Atmos. Chem. Phys., doi:10.5194/acp-22-8259-2022.
- Schlosser, J., et al. (2022), Polarimeter + Lidar–Derived Aerosol Particle Number Concentration, Front. Remote Sens., 3, 885332, doi:10.3389/frsen.2022.885332.
- Tornow, F., et al. (2022), Dilution of Boundary Layer Cloud Condensation Nucleus Concentrations by Free Tropospheric Entrainment During Marine Cold Air Outbreaks, Geophys. Res. Lett., 49, e2022GL09844, doi:10.1029/2022GL098444.
- van Diedenhoven, B., et al. (2022), Remote sensing of aerosol water fraction, dry size distribution and soluble fraction using multi-angle, multi-spectral polarimetry, Atmos. Meas. Tech., 15, 7411-7434, doi:10.5194/amt-15-7411-2022.
- Corral, A., et al. (2021), All Rights Reserved. An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast – Part 1: Analysis of Aerosols, Gases, and Wet Deposition Chemistry, J. Geophys. Res., 126, e2020JD032592, doi:10.1029/2020JD032592.
- Redemann, J., et al. (2021), An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin, Atmos. Chem. Phys., 21, 1507-1563, doi:10.5194/acp-21-1507-2021.
- Sinclair, K., et al. (2021), Inference of Precipitation in Warm Stratiform Clouds Using Remotely Sensed Observations of the Cloud Top Droplet Size Distribution, Geophys. Res. Lett..
- Xu, F., et al. (2021), A Combined Lidar-Polarimeter Inversion Approach for Aerosol Remote Sensing Over Ocean, Front. Remote Sens., 2, 1-24, doi:10.3389/frsen.2021.620871.
- Alexandrov, M. D., et al. (2020), Vertical profiles of droplet size distributions derived from cloud-side T observations by the research scanning polarimeter: Tests on simulated data ⁎, Atmos. Res., 239, 104924, doi:10.1016/j.atmosres.2020.104924.
- Miller, D. J., et al. (2020), Low-level liquid cloud properties during ORACLES retrieved using airborne polarimetric measurements and a neural network algorithm, Atmos. Meas. Tech., 13, 3447-3470, doi:10.5194/amt-13-3447-2020.
- Redemann, J., et al. (2020), An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2020-449.
- Sinclair, K., et al. (2020), Observations of Aerosol‐Cloud Interactions During the North Atlantic Aerosol and Marine Ecosystem Study, Geophys. Res. Lett., 47, 1-10, doi:10.1029/2019GL085851.
- Sorooshian, A., et al. (2020), Atmospheric Research Over the Western North Atlantic Ocean Region and North American East Coast: A Review of Past Work and Challenges Ahead, J. Geophys. Res., 125, e2019JD031626, doi:10.1029/2019JD031626.
- van Diedenhoven, B., et al. (2020), Global Statistics of Ice Microphysical and Optical Properties at Tops of Optically Thick Ice Clouds, J. Geophys. Res., 125, doi:10.1029/2019JD031811.
- Behrenfeld, M., et al. (2019), The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview, Front. Mar. Sci., 6, 122, doi:10.3389/fmars.2019.00122.
- Dubovik, O., et al. (2019), Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives, J. Quant. Spectrosc. Radiat. Transfer, 224, 474-511, doi:10.1016/j.jqsrt.2018.11.024.
- Frouin, R., et al. (2019), Atmospheric Correction of Satellite Ocean-Color Imagery During the PACE Era, Front. Earth Sci., 7, 145, doi:10.3389/feart.2019.00145.
- Jamet, C., et al. (2019), Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry, Front. Mar. Sci., 6, 251, doi:10.3389/fmars.2019.00251.
- Mishchenko, M., M. A. Yurkin, and B. Cairns (2019), Scattering of a damped inhomogeneous plane wave by a particle in a weakly absorbing medium, OSA Continuum, 2, 2362-2368, doi:10.1364/OSAC.2.002362.
- Mishchenko, M., et al. (2019), Retrieval of volcanic and man-made stratospheric aerosols from orbital polarimetric measurements, Optics Express, 27, A158, doi:10.1364/OE.27.00A158.
- Pistone, K., et al. (2019), Intercomparison of biomass burning aerosol optical properties from in situ and remote-sensing instruments in ORACLES-2016, Atmos. Chem. Phys., 19, 9181-9208, doi:10.5194/acp-19-9181-2019.
- Remer, L., et al. (2019), Retrieving Aerosol Characteristics From the PACE Mission, Part 1: Ocean Color Instrument, Ocean Color Instrument. Front. Earth Sci., 7, 152, doi:10.3389/feart.2019.00152.
- Remer, L., et al. (2019), Retrieving Aerosol Characteristics From the PACE Mission, Part 2: Multi-Angle and Polarimetry, Multi-Angle and Polarimetry. Front. Environ. Sci., 7, 94, doi:10.3389/fenvs.2019.00094.
- Sinclair, K., et al. (2019), Polarimetric retrievals of cloud droplet number concentrations T a,b,⁎ b,c b b,c, Remote Sensing of Environment, 228, 227-240, doi:10.1016/j.rse.2019.04.008.
- Sorooshian, A., et al. (2019), Aerosol–Cloud–Meteorology Interaction Airborne Field Investigations: Using Lessons Learned from the U.S. West Coast in the Design of ACTIVATE off the U.S. East Coast, Bull. Am. Meteorol. Soc., 1511-1528, doi:10.1175/BAMS-D-18-0100.1.
- Alexandrov, M. D., et al. (2018), Retrievals of cloud droplet size from the research scanning polarimeter data: T Validation using in situ measurements, Remote Sensing of Environment, 210, 76-95, doi:10.1016/j.rse.2018.03.005.
- Gao, M., et al. (2018), Retrieval of aerosol properties and water-leaving reflectance from multi-angular polarimetric measurements over coastal waters, Optics Express, 26, 8968-8989, doi:10.1364/OE.26.008968.
- Ottaviani, M., et al. (2018), Airborne and shipborne polarimetric measurements over open ocean and T coastal waters: Intercomparisons and implications for spaceborne observations ⁎, Remote Sensing of Environment, 206, 375-390, doi:10.1016/j.rse.2017.12.015.
- Segal-Rozenhaimer, M., et al. (2018), Development of neural network retrievals of liquid cloud properties from multi-angle polarimetric observations, J. Quant. Spectrosc. Radiat. Transfer, 220, 39-51, doi:10.1016/j.jqsrt.2018.08.030.
- Stamnes, S., et al. (2018), Simultaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the “MAPP” algorithm with comparison to high-spectral-resolution lidar aerosol and ocean products, Appl. Opt., 57, 2394-2413, doi:10.1364/AO.57.002394.
- van Harten, G., et al. (2018), Calibration and validation of Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) polarization measurements, Appl. Opt., 57, 4499-4513, doi:10.1364/AO.57.004499.
- Xu, F., et al. (2018), Coupled Retrieval of Liquid Water Cloud and Above-Cloud Aerosol Properties Using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), J. Geophys. Res., 123, 3175-3204, doi:10.1002/2017JD027926.
- Di Noia, A., et al. (2017), Combined neural network/Phillips–Tikhonov approach to aerosol retrievals over land from the NASA Research Scanning Polarimeter, Atmos. Meas. Tech., 10, 4235-4252, doi:10.5194/amt-10-4235-2017.
- Sinclair, K., et al. (2017), Remote sensing of multiple cloud layer heights using multi-angular measurements, Atmos. Meas. Tech., 10, 2361-2375, doi:10.5194/amt-10-2361-2017.
- Alexandrov, M. D., et al. (2016), Polarized view of supercooled liquid water clouds, Remote Sensing of Environment, 181, 96-110, doi:10.1016/j.rse.2016.04.002.
- Alexandrov, M. D., et al. (2016), Derivation of cumulus cloud dimensions and shape from the airborne measurements by the Research Scanning Polarimeter, Remote Sensing of Environment, 177, 144-152, doi:10.1016/j.rse.2016.02.032.
- Alexandrov, M. D., et al. (2016), New Statistical Model for Variability of Aerosol Optical Thickness: Theory and Application to MODIS Data over Ocean*, J. Atmos. Sci., 73, 821-837, doi:10.1175/JAS-D-15-0130.1.
- Berg, L. K., et al. (2016), (2016), The Two-Column Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth, J. Geophys. Res., 121, 336-361, doi:10.1002/2015JD023848.
- Berg, L. K., et al. (2016), The Two-Column Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth, J. Geophys. Res., 121, 336-361, doi:10.1002/2015JD023848.
- McCorkel, J., B. Cairns, and A. Wasilewski (2016), Imager-to-radiometer in-flight cross calibration: RSP radiometric comparison with airborne and satellite sensors, Atmos. Meas. Tech., 9, 955-962, doi:10.5194/amt-9-955-2016.
- Mishchenko, M., et al. (2016), First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media, Physics Reports, 632, 1-75.
- Mishchenko, M., et al. (2016), First-principles definition and measurement of planetary electromagnetic-energy budget, Journal of the Optical Society of America A, 33, 1126-1132.
- Mishchenko, M., et al. (2016), Multistatic aerosol–cloud lidar in space: A theoretical perspective, J. Quant. Spectrosc. Radiat. Transfer, 184, 180-192, doi:10.1016/j.jqsrt.2016.07.015.
- van Diedenhoven, B., et al. (2016), Vertical variation of ice particle size in convective cloud tops, Geophys. Res. Lett., 43, doi:10.1002/2016GL068548.
- van Diedenhoven, B., et al. (2016), On Averaging Aspect Ratios and Distortion Parameters over Ice Crystal Population Ensembles for Estimating Effective Scattering Asymmetry Parameters, J. Atmos. Sci., 73, 775-787, doi:10.1175/JAS-D-15-0150.1.
- Wu, L., et al. (2016), Passive remote sensing of aerosol layer height using near-UV multiangle polarization measurements, Geophys. Res. Lett., 43, 8783-8790, doi:10.1002/2016GL069848.
- Alexandrov, M. D., et al. (2015), Liquid water cloud properties during the Polarimeter Definition Experiment (PODEX), Remote Sensing of Environment, 169, 20-36, doi:10.1016/j.rse.2015.07.029.
- Geogdzhayev, I., et al. (2015), Extension and statistical analysis of the GACP aerosol optical thickness record, Atmos. Res., 164–165, 268-277, doi:10.1016/j.atmosres.2015.05.013.
- Kokhanovsky, A. A., et al. (2015), Space-based remote sensing of atmospheric aerosols: The multi-angle spectro-polarimetric frontier, Earth-Science Reviews, 85-116, doi:10.1016/j.earscirev.2015.01.012.
- Ottaviani, M., B. van Diedenhoven, and B. Cairns (2015), Photopolarimetric retrievals of snow properties, The Cryosphere, 9, 1933-1942, doi:10.5194/tc-9-1933-2015.
- Wu, L., et al. (2015), Aerosol retrieval from multiangle, multispectral photopolarimetric measurements: importance of spectral range and angular resolution, Atmos. Meas. Tech., 8, 2625-2638, doi:10.5194/amt-8-2625-2015.
- Geogdzhayev, I., et al. (2014), Model-based estimation of sampling-caused uncertainty in aerosol remote sensing for climate research applications, Q. J. R. Meteorol. Soc., 140, 2353-2363, doi:10.1002/qj.2305.
- Mishchenko, M., et al. (2014), Optics of water cloud droplets mixed with black-carbon aerosols, Opt. Lett., 39, 2607-2610, doi:10.1364/OL.39.002607.
- Mishchenko, M., et al. (2014), Optics of water cloud droplets mixed with black-carbon aerosols, Opt. Lett., 39, 2607-2610.
- van Diedenhoven, B., et al. (2014), Variation of ice crystal size, shape, and asymmetry parameter in tops of tropical deep convective clouds, J. Geophys. Res., 119, 11,809-11,825, doi:10.1002/2014JD022385.
- van Diedenhoven, B., et al. (2014), A Flexible Parameterization for Shortwave Optical Properties of Ice Crystals*, J. Atmos. Sci., 71, 1763-1782, doi:10.1175/JAS-D-13-0205.1.
- Geogdzhayev, I., et al. (2013), Statistical analysis of single-track instrument sampling in spaceborne aerosol remote sensing for climate research, J. Quant. Spectrosc. Radiat. Transfer, 121, 69-77, doi:10.1016/j.jqsrt.2013.02.003.
- Ottaviani, M., et al. (2013), Information content of aerosol retrievals in the sunglint region, Geophys. Res. Lett., 40, 631-634, doi:10.1002/grl.50148.
- Ryerson, T. B., et al. (2013), The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study, J. Geophys. Res., 118, 5830-5866, doi:10.1002/jgrd.50331.
- van Diedenhoven, B., et al. (2013), Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements – Part 2: Application to the Research Scanning Polarimeter, Atmos. Chem. Phys., 13, 3185-3203, doi:10.5194/acp-13-3185-2013.
- Zhai, P., et al. (2013), Uncertainty and interpretation of aerosol remote sensing due to vertical inhomogeneity, J. Quant. Spectrosc. Radiat. Transfer, 114, 91-100, doi:10.1016/j.jqsrt.2012.08.006.
- Alexandrov, M. D., et al. (2012), Accuracy assessments of cloud droplet size retrievals from polarized reflectance measurements by the research scanning polarimeter, Remote Sensing of Environment, 125, 92-111, doi:10.1016/j.rse.2012.07.012.
- Alexandrov, M. D., B. Cairns, and M. Mishchenko (2012), Rainbow Fourier transform, J. Quant. Spectrosc. Radiat. Transfer, 113, 2521-2535, doi:10.1016/j.jqsrt.2012.03.025.
- Chowdhary, J., et al. (2012), Sensitivity of multiangle, multispectral polarimetric remote sensing over open oceans to water-leaving radiance: Analyses of RSP data acquired during the MILAGRO campaign, Remote Sensing of Environment, 118, 284-308, doi:10.1016/j.rse.2011.11.003.
- Knobelspiesse, K., et al. (2012), Analysis of fine-mode aerosol retrieval capabilities by different passive remote sensing instrument designs, Opt. Express, 20, 21457-21484.
- Knobelspiesse, K., et al. (2012), Analysis of fine-mode aerosol retrieval capabilities by different passive remote sensing instrument designs , Optics Express, 20, 21457-21484.
- Mishchenko, M., et al. (2012), Aerosol retrievals from channel-1 and -2 AVHRR radiances: Long-term trends updated and revisited, J. Quant. Spectrosc. Radiat. Transfer, 113, 1974-1980, doi:10.1016/j.jqsrt.2012.05.006.
- Ottaviani, M., et al. (2012), Polarimetric retrievals of surface and cirrus clouds properties in the region affected by the Deepwater Horizon oil spill, Remote Sensing of Environment, 121, 389-403, doi:10.1016/j.rse.2012.02.016.
- van Diedenhoven, B., et al. (2012), Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements – Part 1: Methodology and evaluation with simulated measurements, Atmos. Meas. Tech., 5, 2361-2374, doi:10.5194/amt-5-2361-2012.
- van Diedenhoven, B., et al. (2012), Evaluation of Hydrometeor Phase and Ice Properties in Cloud-Resolving Model Simulations of Tropical Deep Convection Using Radiance and Polarization Measurements, J. Atmos. Sci., 69, 3290-3314, doi:10.1175/JAS-D-11-0314.1.
- Zaveri, R. A., et al. (2012), Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES), Atmos. Chem. Phys., 12, 7647-7687, doi:10.5194/acp-12-7647-2012.
- Knobelspiesse, K., et al. (2011), Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar, Atmos. Chem. Phys., 11, 7045-7067, doi:10.5194/acp-11-7045-2011.
- Knobelspiesse, K., et al. (2011), Simultaneous retrieval of aerosol and cloud properties during the MILAGRO field campaign, Atmos. Chem. Phys., 11, 6245-6263, doi:10.5194/acp-11-6245-2011.
- Lytvynov, P., Otto Hasekamp, and B. Cairns (2011), Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements, Remote Sensing of Environment, 115, 781-792, doi:10.1016/j.rse.2010.11.005.
- Mishchenko, M., et al. (2011), Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions, J. Quant. Spectrosc. Radiat. Transfer, 112, 671-692, doi:10.1016/j.jqsrt.2010.03.016.
- Lytvynov, P., et al. (2010), Reflection models for soil and vegetation surfaces from multiple-viewing angle photopolarimetric measurements, J. Quant. Spectrosc. Radiat. Transfer, 111, 529-539, doi:10.1016/j.jqsrt.2009.11.001.
- Mishchenko, M., et al. (2010), Toward unified satellite climatology of aerosol properties. 3. MODIS versus MISR versus AERONET, J. Quant. Spectrosc. Radiat. Transfer, 111, 540-552, doi:10.1016/j.jqsrt.2009.11.003.
- Alexandrov, M. D., et al. (2009), Columnar water vapor retrievals from multifilter rotating shadowband radiometer data, J. Geophys. Res., 114, D02306, doi:10.1029/2008JD010543.
- Mishchenko, M., et al. (2009), Toward unified satellite climatology of aerosol properties: What do fully compatible MODIS and MISR aerosol pixels tell us?, J. Quant. Spectrosc. Radiat. Transfer, 110, 402-408, doi:10.1016/j.jqsrt.2009.01.007.
- Waquet, F., et al. (2009), Polarimetric remote sensing of aerosols over land, J. Geophys. Res., 114, D01206, doi:10.1029/2008JD010619.
- Waquet, F., et al. (2009), Aerosol Remote Sensing over Clouds Using A-Train Observations, J. Atmos. Sci., 66, 2468-2480, doi:10.1175/2009JAS3026.1.
- Waquet, F., et al. (2009), Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land, Appl. Opt., 48, 1228-1236.
- Alexandrov, M. D., et al. (2008), Characterization of atmospheric aerosols using MFRSR measurements, J. Geophys. Res., 113, D08204, doi:10.1029/2007JD009388.
- Knobelspiesse, K., et al. (2008), Surface BRDF estimation from an aircraft compared to MODIS and ground estimates at the Southern Great Plains site, J. Geophys. Res., 113, D20105, doi:10.1029/2008JD010062.
- Diner, D., et al. (2007), Dual photoelastic modulator-based polarimetric imaging concept for aerosol remote sensing, Appl. Opt., 46, 8428-8445.
- Hansen, J., et al. (2007), Dangerous human-made interference with climate: a GISS modelE study, Atmos. Chem. Phys., 7, 2287-2312, doi:10.5194/acp-7-2287-2007.
- Hansen, J., et al. (2007), Climate simulations for 1880-2003 with GISS modelE, Clim. Dyn., 29, 661-696, doi:10.1007/s00382-007-0255-8.
- Mishchenko, M., et al. (2007), Long-term satellite record reveals likely recent aerosol trend, Science, 315, 1543, doi:10.1126/science.1136709.
- Mishchenko, M., et al. (2007), Past, present, and future of global aerosol climatologies derived from satellite observations: A perspective, J. Quant. Spectrosc. Radiat. Transfer, 106, 325-347, doi:10.1016/j.jqsrt.2007.01.007.
- Mishchenko, M., et al. (2007), Accurate Monitoring of Terrestrial Aerosols and Total Solar Irradiance Introducing the Glory Mission, Bull. Am. Meteorol. Soc., 677-692.
- Schmidt, G. A., et al. (2006), Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data, J. Climate, 19, 153-192.
- Alexandrov, M. D., et al. (2005), Separation of fine and coarse aerosol modes in MFRSR data sets, J. Geophys. Res., 110, D13204, doi:10.1029/2004JD005226.
- Chowdhary, J., et al. (2005), Retrieval of aerosol single scattering albedo and absorption properties from photopolarimetric observations over the ocean during the Chesapeake Lighthouse and Aircraft Measurements for Satellite (CLAMS) experiment, J. Atmos. Sci., 62.
- Hansen, J., et al. (2005), Efficacy of climate forcings, J. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776.
- Alexandrov, M. D., et al. (2004), Scaling Properties of Aerosol Optical Thickness Retrieved from Ground-Based Measurements, J. Atmos. Sci., 61, 1024-1039.
- Alexandrov, M. D., et al. (2002), Remote Sensing of Atmospheric Aerosols and Trace Gases by Means of Multifilter Rotating Shadowband Radiometer. Part II: Climatological Applications, J. Atmos. Sci., 59, 544-566.
- Alexandrov, M. D., et al. (2002), Remote Sensing of Atmospheric Aerosols and Trace Gases by Means of Multifilter Rotating Shadowband Radiometer. Part I: Retrieval Algorithm, J. Atmos. Sci., 59, 524-543.