Organization
NASA Ames Research Center
Email
Business Phone
(650) 604-5420
Business Address
NASA Ames Research Center
MS232-21
Moffett Field, CA 94035-1000
United States
First Author Publications
-
Johnson, M.S., et al. (2024), TOLNet validation of satellite ozone profiles in the troposphere: impact of retrieval wavelengths, Atmos. Meas. Tech., 17, 2559-2582, doi:10.5194/amt-17-2559-2024.
-
Johnson, M.S., et al. (2023), V. (2021). Spatiotemporal methane emission from global reservoirs, J. Geophys. Res., e2021JG006305, doi:10.1029/2021JG006305.
-
Johnson, M.S., et al. (2023), Satellite remote-sensing capability to assess tropospheric-column ratios of formaldehyde and nitrogen dioxide: case study during the Long Island Sound Tropospheric Ozone Study 2018 (LISTOS 2018) field campaign, Atmos. Meas. Tech., 16, 2431-2454, doi:10.5194/amt-16-2431-2023.
-
Johnson, M.S., et al. (2022), Methane Emission From Global Lakes: New Spatiotemporal Data and Observation-Driven Modeling of Methane Dynamics Indicates Lower Emissions, J. Geophys. Res., 127, e2022JG006793, doi:10.1029/2022JG006793.
-
Johnson, M.S., et al. (2021), Long-range transport of Siberian biomass burning emissions to North America during FIREX-AQ, Atmos. Environ., 252, 118241, doi:10.1016/j.atmosenv.2021.118241.
-
Johnson, M.S., et al. (2020), Carbon Dioxide Emissions During the 2018 Kilauea Volcano Eruption Estimated Using OCO‐2 Satellite Retrievals, Geophys. Res. Lett., 47, e2020GL090507, doi:10.1029/2020GL090507.
-
Johnson, M.S., et al. (2018), Evaluation of potential sources of a priori ozone profiles for TEMPO tropospheric ozone retrievals, Atmos. Meas. Tech., 11, 3457-3477.
-
Johnson, M.S., et al. (2016), Evaluating Summer-Time Ozone Enhancement Events in the Southeast United States, Atmosphere, 7, 108, doi:10.3390/atmos7080108.
-
Johnson, M.S., et al. (2016), Investigating seasonal methane emissions in Northern California using airborne measurements and inverse modeling, J. Geophys. Res., 121, doi:10.1002/2016JD025157.
-
Johnson, M.S., et al. (2014), Analyzing source apportioned methane in northern California during Discover-AQ-CA using airborne measurements and model simulations, Atmos. Environ., 99, 248-256, doi:10.1016/j.atmosenv.2014.09.068.
-
Johnson, M.S., and N. Meskhidze (2013), Atmospheric dissolved iron deposition to the global oceans: effects of oxalate-promoted Fe dissolution, photochemical redox cycling, and dust mineralogy, Geosci. Model Dev. Discuss., 6, 1-47, doi:10.1002/jgrd.50421.
-
Johnson, M.S., et al. (2012), A global comparison of GEOS-Chem-predicted and remotely-sensed mineral dust aerosol optical depth and extinction profiles, J. Adv. Modeling Earth Syst., doi:10.1029/2011MS000109.
-
Johnson, M.S., et al. (2011), Understanding the transport of Patagonian dust and its influence on marine biological activity in the South Atlantic Ocean, Atmos. Chem. Phys., 11, 2487-2502, doi:10.5194/acp-11-2487-2011.
-
Johnson, M.S., et al. (2010), Modeling dust and soluble iron deposition to the South Atlantic Ocean, J. Geophys. Res., 115, D15202, doi:10.1029/2009JD013311.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Gaubert, B., et al. (2024), Neutral Tropical African CO2 Exchange Estimated From Aircraft and Satellite Observations, Global Biogeochem. Cycles.
-
Gaubert, B., et al. (2024), Neutral Tropical African CO2 Exchange Estimated From Aircraft and Satellite Observations, Global Biogeochem. Cycles, 37, e2023GB007804, doi:10.1029/2023GB007804.
-
Hsu, C., et al. (2024), An Observing System Simulation Experiment Analysis of How Well Geostationary Satellite Trace-Gas Observations Constrain NOx Emissions in the US, J. Geophys. Res., 129, e2023JD039323, doi:10.1029/2023JD039323.
-
Kuang, S., et al. (2024), Mobile Observations of Ozone and Aerosols in Alabama: Southeastern US Summer Pollution and Coastal Variability, J. Geophys. Res..
-
Souri, A., et al. (2023), Decoupling in the vertical shape of HCHO during a sea breeze event: The effect on trace gas satellite retrievals and column-to-surface translation, Atmos. Environ., 309, 119929, doi:10.1016/j.atmosenv.2023.119929.
-
Peiro, H., et al. (2022), Four years of global carbon cycle observed from the Orbiting Carbon Observatory 2 (OCO-2) version 9 and in situ data and comparison to OCO-2 version 7, Atmos. Chem. Phys., doi:10.5194/acp-22-1097-2022.
-
Souri, A., et al. (2022), Dealing with spatial heterogeneity in pointwise-to-griddeddata comparisons, Atmos. Meas. Tech., 15, 41-59, doi:10.5194/amt-15-41-2022.
-
Matthews, E., et al. (2020), Methane flux from high latitude lakes: methane-centric lake classification and satellite-driven annual cycle of fluxes, Sci. Rep.-UK, 10, 1-9, doi:10.1038/s41598-020-68246-1.
-
Ito, A., et al. (2019), Pyrogenic iron: The missing link to high iron solubility in aerosols, American Association for the Advancement of Science, 5, eaau7671, doi:10.1126/sciadv.aau7671.
-
Philip, S., et al. (2019), Prior biosphere model impact on global terrestrial CO2 fluxes estimated 2 from OCO-2 retrievals, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2018-1095.
-
Leblanc, T., et al. (2018), Validation of the TOLNet lidars: the Southern California Ozone Observation Project (SCOOP), Atmos. Meas. Tech., 11, 6137-6162, doi:10.5194/amt-11-6137-2018.
-
Myriokefalitakis, S., et al. (2018), Reviews and syntheses: the GESAMP atmospheric iron deposition model intercomparison study, Biogeosciences, 15, 6659-6684, doi:10.5194/bg-15-6659-2018.
-
Dawson, K.W., et al. (2017), Creating Aerosol Types from CHemistry (CATCH): A New Algorithm to Extend the Link Between Remote Sensing and Models, J. Geophys. Res., 122, doi:10.1002/2017JD026913.
-
Granados-Muñoz, M.J., et al. (2017), Influence of the North American monsoon on Southern California tropospheric ozone levels during summer in 2013 and 2014, Geophys. Res. Lett., 44, doi:10.1002/2017GL073375.
-
Kuang, S., et al. (2017), Summertime tropospheric ozone enhancement associated with a cold front passage due to stratosphere-totroposphere transport and biomass burning: Simultaneous ground-based lidar and airborne measurements, J. Geophys. Res., 122, doi:10.1002/2016JD026078.
-
Meskhidze, N., et al. (2017), Potential effect of atmospheric dissolved organic carbon on the iron solubility in seawater, Marine Chemistry, 194, 124-132, doi:10.1016/j.marchem.2017.05.011.
-
Ryoo, J., et al. (2017), Investigating sources of ozone over California using AJAX airborne measurements and models: Assessing the contribution from longrange transport, Atmos. Environ., 155, 53-67, doi:10.1016/j.atmosenv.2017.02.008.
-
Tadic, J.M., et al. (2017), Elliptic Cylinder Airborne Sampling and Geostatistical Mass Balance Approach for Quantifying Local Greenhouse Gas Emissions, Environ. Sci. Technol., 51, 10012-10021, doi:10.1021/acs.est.7b03100.
-
Yates, E., et al. (2017), An Assessment of Ground Level and Free Tropospheric Ozone Over California and Nevada, J. Geophys. Res., 122, 10,089-10,102, doi:.org/10.1002/2016JD026266.
-
Ito, T., et al. (2016), Acceleration of oxygen decline in the tropical Pacific over the past decades by aerosol pollutants, Nature Geoscience, 1, doi:10.1038/NGEO2717.
-
Meskhidze, N., et al. (2016), Influence of measurement uncertainties on fractional solubility of iron in mineral aerosols over the oceans, Aeolian Research, 22, 85-92.
-
Tanaka, T.A., et al. (2016), Two-Year Comparison of Airborne Measurements of CO2 and CH4 With GOSAT at Railroad Valley, Nevada, IEEE Trans. Geosci. Remote Sens., 54, 4367-4375, doi:10.1109/TGRS.2016.2539973.
-
Xi, X., et al. (2016), Constraining the sulfur dioxide degassing flux from Turrialba volcano, Costa Rica using unmanned aerial system measurements, Journal of Volcanology and Geothermal Research, 325, 110-118, doi:10.1016/j.jvolgeores.2016.06.023.
-
Gantt, B.D., et al. (2015), Implementing marine organic aerosols into the GEOS-Chem model, Geosci. Model Dev., 8, 619-629, doi:10.5194/gmd-8-619-2015.
-
Gantt, B., et al. (2014), Implementing marine organic aerosols in the GEOS-Chem model, Geosci. Model Dev. Discuss., 7, 5965-5965, doi:10.5194/gmdd-7-5965-2014.
-
Meskhidze, N., et al. (2013), Production mechanisms, number concentration, size distribution, chemical composition, and optical properties of sea spray aerosols, Royal Meteorological Society, I, doi:10.1002/asl2.441.
-
Yates, E., et al. (2013), Airborne observations and modeling of springtime stratosphere-to-troposphere transport over California, Atmos. Chem. Phys., 13, 12481-12494, doi:10.5194/acp-13-12481-2013.
-
Gantt, B.D., et al. (2012), Model evaluation of marine primary organic aerosol emission schemes, Atmos. Chem. Phys., 12, 8553-8566, doi:10.5194/acp-12-8553-2012.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.