The severity of wildfires is increasing and has driven increases in nighttime fire activity. Enhanced capability to detect the active burning regions of wildfires at night could significantly improve the effectiveness of wildfire management operations. Potassium line emission in the NIR near 770 nm is a signature of active burning. We test the use of multi-band imaging from an aircraft at night to distinguish a wood-burning fire from artificial light sources. We find that a simple ratio of the signals in two broad bands, one including 770 nm, effectively discriminates the fire from artificial light sources. This offers the possibility of nighttime fire detection with high spatial resolution using silicon sensors sensitive in the NIR.
remote sensing Communication On the Potential of Flaming Hotspot Detection at Night via Multiband Visible/Near-Infrared Imaging
Kaaret, P., S. Tammes, J. Wang, T. Schnell, M. Linderman, C.H. Richey, C.M. Packard, M. Zhou, and C.A. Fuller (2022), remote sensing Communication On the Potential of Flaming Hotspot Detection at Night via Multiband Visible/Near-Infrared Imaging, Remote Sens., 14, 5019, doi:10.3390/rs14195019.
Abstract
PDF of Publication
Download from publisher's website
Research Program
Atmospheric Composition
Atmospheric Composition Modeling and Analysis Program (ACMAP)
Radiation Science Program (RSP)
Tropospheric Composition Program (TCP)