Topographic Effects on the Luzon Diurnal Cycle during the BSISO

Dellaripa, E. M. R., E. D. Maloney, B. A. Toms, S. Saleeby, and S. van den Heever (2020), Topographic Effects on the Luzon Diurnal Cycle during the BSISO, J. Atmos. Sci., 77, 3-29, doi:10.1175/JAS-D-190046.s1.

Cloud-resolving simulations are used to evaluate the importance of topography to the diurnal cycle (DC) of precipitation (DCP) over Luzon, Philippines, and surrounding ocean during the July–August 2016 boreal summer intraseasonal oscillation (BSISO) event. Composites of surface precipitation for each 30-min time increment during the day are made to determine the mean DCP. The mean DCP is computed separately for suppressed and active BSISO conditions and compared across three simulations with varying topography— flat, true, and doubled topographic height. The magnitude of the topographic height helps to dictate the timing, intensity, and location of diurnal precipitation over and near Luzon. For example, the mean DCP in the true topography run peaks 1.5 h later, is broader by 1 h, and has a 9% larger amplitude during active conditions relative to suppressed conditions. By contrast, the flat run mean DCP is earlier and narrower by 0.5 h with a 5% smaller amplitude during active conditions versus suppressed conditions. Within the suppressed or active BSISO conditions, the mean DCP peak and amplitude increase as the topographic height increases. The presence of elevated topography focuses precipitation over the coastal mountains during suppressed conditions, while dictating which side of the domain (i.e., east Luzon and the Philippine Sea vs west Luzon and the South China Sea) more precipitation occurs in during active conditions. These topographic-induced changes are discussed in terms of mechanical and thermodynamic forcing differences between the two large-scale BSISO regimes for the three runs.

PDF of Publication: 
Download from publisher's website.