Temporal and Spatial Variations of Global Deep Cloud Systems Based on CloudSat...

Peng, J., H. Zhang, and Z. Li (2014), Temporal and Spatial Variations of Global Deep Cloud Systems Based on CloudSat and CALIPSO Satellite Observations, Advances In Atmospheric Sciences, 31, 593-603.
Abstract: 

The spatial and temporal global distribution of deep clouds was analyzed using a four-year dataset (2007–10) based on observations from CloudSat and CALIPSO. Results showed that in the Northern Hemisphere, the number of deep cloud systems (DCS) reached a maximum in summer and a minimum in winter. Seasonal variations in the number of DCS varied zonally in the Southern Hemisphere. DCS occurred most frequently over central Africa, the northern parts of South America and Australia, and Tibet. The mean cloud-top height of deep cloud cores (TDCC) decreased toward high latitudes in all seasons. DCS with the highest TDCC and deepest cores occurred over east and south Asian monsoon regions, west-central Africa and northern South America. The width of DCS (WDCS) increased toward high latitudes in all seasons. In general, DCS were more developed in the horizontal than in the vertical direction over high latitudes and vice versa over lower latitudes. Findings from this study show that different mechanisms are behind the development of DCS at different latitudes. Most DCS at low latitudes are deep convective clouds which are highly developed in the vertical direction but cover a relatively small area in the horizontal direction; these DCS have the highest TDCC and smallest WDCS. The DCS at midlatitudes are more likely to be caused by cyclones, so they have less vertical development than DCS at low latitudes. DCS at high latitudes are mainly generated by large frontal systems, so they have the largest WDCS and the smallest TDCC.

Mission: 
CloudSat